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Summary

A single tow consists of thousands of filaments which are bundled together and may be
used as it is or further processed and woven into a fabric. Due to its discrete nature
the tow shape can significantly change under loading. The shape of the tow can have an
impact on several production and performance aspects. For instance, tow deformation
can influence the permeability of a fabric during resin impregnation. It can also a↵ect
the dimensions and thickness of products, for example in braiding or filament winding
processes.

This study is focused on modeling the spreading behavior of continuous fiber materials
or tows. Several experiments were designed to identify the most relevant deformation
mechanisms and measure their e↵ect. During the experiments it was determined that
the main mechanisms playing a role in tow spread are the setup geometry, sizing and
twist and within the range of measurements friction and tow tension had no significant
e↵ect. After the identification of the spreading mechanisms, they were implemented
using a discrete element approach. The Discrete Element Method was used to predict
the tow spread, shape and structure by modeling the individual filaments of the tow.
Various simplifications were made to start with the most simple model. Subsequently
other features were implemented to understand their importance one-by-one. The discrete
element method also provided the possibility of analyzing stress and pressure in the tow
packing. Comparison of the experimental and numerical results concluded that DEM is
a suitable tool for modeling tow deformation. The model can predict the e↵ect of setup
geometry and the presence of sizing well within 10 percent of the experimental results.
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Nomenclature

Symbol Description
d Free tow (or filament) length
h Height or y component of free tow (or filament) length d
z Component of free tow length, d, in the z-direction (or filament)
z
c

Clamp to center of spreader bar distance
a Filament radius
h
p

Filament height
f Force per unit length
F Force
� Stress
k Particle Sti↵ness
� Dissipation Coe�cient
b Virtual damping Coe�cient
✏ Coe�cient of Restitution
m Particle mass
a Particle radius
N Number of particles
t
c

Collision time
� Overlap
s cohesion factor
x Lateral or x-component of length d of the filament
w Spread of the tow
R Radius of spreader bar
L Total length of the tow (or filament)
E Elasticity modulus of material
T Tension
lpc Branch vector

iv



Chapter 1

Introduction

Composite materials are widely used in modern industry nowadays, in fact one can say
that Fiber Reinforced Plastics (FRP) have made a revolution in manufacturing. Struc-
tures which were previously impossible or expensive to manufacture are now easily made.
One of the main advantages of FRPs is the high strength and sti↵ness to weight ratio.
This characteristic allows composite materials to be used in places were weight is a limit-
ing factor while high strength is required, for instance in aircraft and aerospace industries.
The application of these materials has extended to automotive, civil, sport equipment and
many other applications.

1.1 Background

The main disadvantage of composite materials was the high cost of labor and materials
and the slow production time compared to other conventional materials. Since most of the
manufacturing was carried out by hand labor the quality of the final product was highly
operator dependent and repeatability was not satisfactory. As time passed more advanced
materials and manufacturing methods were introduced; automation reduced costs of la-
bor and production time while increasing equipment cost. A more important impact of
automation of manufacturing was increased product quality removing the operator depen-
dence of quality. However, it was crucial to be able to control the manufacturing process
carefully to obtain the desired structure with the best performance.

Fiber reinforced composites are materials made of two or more constituent materials,
being a matrix and a reinforcement. The matrix is usually a thermoplastic or thermoset
polymer (resin) and the reinforcement can be any type of tow material. The tows are
usually glass, carbon or aramid, although other types of materials, such as natural fibers,
can be used. The tows are available in various forms, such as continuous, short or chopped
threads. Each tow consists of several thousands of filaments which are wound together to
make the tow (fig. 1.1).

The performance of these materials depends on the behavior of each constituent and
the interaction between them as a whole. There are many issues to be considered during
production of a composite structure based on the type of manufacturing method. In
general, the matrix should be continuous throughout the structure with no voids, optimal
adhesion should exist between the matrix and fiber surface, alignment of the fibers should
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Introduction

Figure 1.1: Sample tow specimen.

be controlled, resin rich areas should be avoided and automation of the process should be
possible.

Any type of dry spot or area with bubbles will be a suitable location for stress concen-
tration, hence crack initiation and growth. For instance in vacuum infusion, it is crucial to
prevent the creation of voids and dry spots and obtain the required thickness. To reduce
adverse e↵ects and obtain the perfect structure many parameters such as vacuum pressure,
temperature, resin mix, amount of resin and many other have to be controlled [1–4].

Another parameter is the fiber alignment. Although fibers and tows have high strength
and sti↵ness under tension, due to their natural flexibility they cannot tolerate compres-
sive forces. During production the fibers can move under di↵erent forces, such as the
viscous force exerted by the flow of resin or compression of the layers which may lead to
undesirable fiber orientation and waviness [5, 6]. Many studies have shown the adverse
e↵ect of fiber waviness on ultimate sti↵ness and strength [7–10].

In compression molding, the molding material is placed in a mold and formed to
the desired shape. Compression molding is a high volume method which can be used
to manufacture complex and strong fiber reinforcements. However, if not carried out
correctly, the material can tear or wrinkle leading to the decrease of strength and sti↵ness.
Many studies have been conducted to characterize and control adverse e↵ects such as
wrinkling in this production method [11–13].

Figure 1.2: Schematic setup of filament winding.
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Controlling the dimensions of the product is also important. In filament winding, after
impregnation, the tows are wound around a mandrel (mold core) in a controlled pattern
to form the shape of the mandrel (fig. 1.2). As the fiber tow is wound over the mandrel
it will spread under tension and flatten out up to some degree, which depends on how
the winding process is done. In braiding, the deformation of the filaments will have an
impact on the thickness of the end product and on resin rich areas.

Figure 1.3: Schematic of the pultrusion process.

Figure 1.4: The four zones defined by Chandler et al. around the spreader bar [14].

It is also desirable to obtain good adhesion between the matrix and fibers. This
requires that the resin adequately wets the fiber surface. In several processes, such as
pultrusion (fig. 1.3), the tow is pulled through a resin bath before being formed into a
final product. In the resin bath, the tow is pulled over a set of spreader bars to deform the
tow in a way to facilitate the spreading which in turn improves the penetration of resin,
or impregnation. As the tow passes through the resin bath it should, ideally, become
completely saturated. Chandler et al. [14] modeled the impregnation process, based on
the lubrication theory, during which a tow is pulled over a spreader bar, similar to what
is done in a pultrusion process. Four zones were defined on the spreader bar in this model
with di↵erent conditions as shown in (fig. 1.4). The required length for full impregnation
and the tension build-up was calculated analytically and compared with experimental
values. The experimental values were in the range of the model. However, the parameters
related to the shape of the tow were chosen to obtain the best fit between the experiments
and model. While it is clear that the tow shape will have an impact on the impregnation
process. It has been shown that resin penetrates the tow much easier when spreader bars
are used compared to not using spreader bars [15]. As the tow passes over the bars it
spreads and flattens out which helps the wetting process. In one study, the process was
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optimized using the Taguchi method [16], considering several parameters such as pull
speed, melt temperature, number of pins and pretension, which concluded in optimized
values. However, as more spreader bars are used, the tension in the tow increases, which
is required to be kept to a minimum due to residual stress in the final product. Also
high stresses may lead to a failure in the filaments of the tow. Therefore it is necessary
to optimize the number of spreader bars to control this e↵ect while achieving acceptable
impregnation. Several studies have been conducted on this issue.

The focus of this study is predicting the spreading behavior of tows using a new
approach.

1.2 Motivation

A single tow consists of thousands of filaments which are bundled together and may be
used as it is or further processed and woven into a fabric. Due to its discrete nature
the tow shape can significantly change under loading. The shape of the tow can have an
impact on several production and performance aspects. For instance, tow deformation
can influence the permeability of a fabric during resin impregnation. It can also a↵ect
the dimensions and thickness of products, for example in braiding or filament winding
processes.

Figure 1.5: Macro-micro-meso structure of composite materials [17].

The tows make up a laminate and consecutively the laminates make up the structure
(fig. 1.5). Therefore, the deformation of a tow is important since it a↵ects the final
dimensions of a laminate. It is vital to understand the e↵ect of di↵erent forces and
conditions on the deformation of tows.

Another issue is how contact forces are distributed in tows during manufacturing
processes. For example, in braiding, weaving and other production processes the tow
is guided through rings. As the tow deforms and the filaments are pressed together,
the pressure and stress on each filament may cause the filaments to fail, which in turn
can disrupt the production process or reduce the final quality of the product. Continuum
modeling of the tow does not allow considering pressure and stress inhomogeneity between
the filaments.
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1.3 Objective

Considering the issues stated above, it would be very helpful if the tow deformation could
be modeled more precisely under di↵erent load conditions. In this master thesis, the
aim is to model this behavior using the Discrete Element Method (DEM). In addition to
providing a suitable tool for predicting tow spreading, it can provide more insight into
general tow deformation, which can be very helpful in many production processes. It may
also provide better understanding of pressure and stress distribution and evolution, issues
which cannot be easily modeled when the tow is considered as a continuum.

1.3.1 Discrete Element Method

The Discrete Element Method (DEM), is a type of numerical method for computing the
motion of a number of particles on the micro, meso or larger scale. The beauty of DEM
is its simplicity. With advances in computing power and numerical algorithms for nearest
neighbor sorting, it has become possible to numerically simulate millions of particles on
a single processor. An important tool in modeling the mechanical behavior of granular
assemblies, DEM was developed in the 70s by Cundall and Strack [18]. It is a numerical
model where the motion of all particles, usually disks in 2D and spheres in 3D or any
arbitrary particle, is determined for every time step.

Today DEM is becoming widely accepted as an e↵ective method of addressing engi-
neering problems in granular and discontinuous materials, especially in granular flows,
powder mechanics, and rock mechanics. Even though simple, Discrete Element Methods
are relatively computationally intensive, which limits either the length of a simulation or
the number of particles.

1.4 Organization of thesis

A brief literature review on tow deformation is given in chapter 2. The experimental
aspects of this study, such as the experimental setup, materials and results of the mea-
surements, is presented in chapter 3. Chapter 4 is dedicated to the modeling section of the
thesis, where the basic foundation of the DEM model is explained. The model will start
from a simplified version and a feature will be added in each step and compared with the
simplified model. Afterwards a final model with the relevant features is implemented. In
chapter 5, the experimental and numerical results will be compared and recommendations
for future research will be given.
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Chapter 2

Literature on tow deformation

Tow deformation is critical throughout many fiber reinforced material production pro-
cesses. Di↵erent methods and approaches have been used to model tow deformation.
Most studies have modeled tows and fabric yarns as a continuum to investigate the de-
formation and impact response of fabrics made of these tows [19–26]. Only a few studies
have gone into the detail of modeling the tow as an assembly of smaller filaments. The
most common fundamental study on this topic is Wilson’s approach [27], which will be
introduced in detail in the next section.

2.1 Wilson’s model

A theoretical treatment of lateral spreading of the filaments was proposed by Wilson [27].
Wilson treated the filaments in the bundle as a continuum and derived an expression for
the width of the bundle at the spreader bar.

Figure 2.1: The tow is gripped at O and is pulled over a spreader bar, which is modeled
as a thin blade and where O0x is the upper edge of the cylinder, and the tow is gathered
symmetrically at the other side of the bar. PP 0 represents a filament [27].
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Literature on tow deformation

Figure 2.2: Schematic side view illustration of Wilson’s experiment [28].

Wilson proposed a simplified analytical approach to predict tow deformation. A sym-
metrical one bar configuration was considered as shown in fig. 2.1. The filament bundle is
held at O with an initial shape and is pulled over a spreader bar and is gathered symmet-
rically on the other side. Two coordinate systems were defined to simplify the problem,
coordinate system XYZ with origin at O and coordinate system xyz with origin O0. The

planes OXY and O0xy are parallel and |
��!
OO0| = d. A filament goes from point P in the

OXY plane to point P 0 in the O0xy plane. The filament PP 0 can be defined using the
vector:

PP 0 = (x�X, y � Y + d cos↵,�d sin↵). (2.1)

The length of the filament is d = |
��!
PP 0|. The filament is pulled with force T from both

sides. The components of the forces at P 0 can be easily calculated. The x-component is
2T (X � x)/d and the y-component is 2T (Y � y � d cos↵)/d. Wilson assumed that the
tension is constant throughout the filaments and also neglected friction. After making
several assumptions due to the dimensions of the problem, the tension resultants are
thought to be balanced by a hydrostatic pressure p(x, y) satisfying:

@p

@x
=

2Tn

dl
(X � x), (2.2)

@p

@y
=

2Tn

dl
(�d cos↵ + (Y � y) sin2 ↵), (2.3)

where n is the number of filaments per unit cross-section area and l is the distance in
the z direction over which the tension acts on the bar. in order to obtain the pressure p,
the equation should be dimensionless. The scale for X and Y has been assumed a. An
auxiliary term ✏, which is small, has been defined as:

✏ = (a/d)1/3 (2.4)

and by considering the orders of magnitude, x ⇠ a/✏ and y ⇠ a✏ and the scale for p is
2Tna✏/l and also the cross section of the tow which is constant is equal to one. Applying
these values to make eq. (2.2) and eq. (2.3) dimensionless:
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@p

@x
= �x+ ✏X (2.5)

@p

@x
= � cos↵ + ✏3Y sin2 ↵� ✏4 sin2 ↵ (2.6)

If the small terms are neglected the pressure p can be obtained:

p = �1

2
x2 � y cos↵ + const = �1

2
x2 � y cos↵ +

1

2
c2 (2.7)

On the outer boundary of the tow, the pressure is zero, p = 0, and y = y
s

(x) where
y
s

(x) is the shape of the free surface:

y
s

(x) cos↵ =
1

2
(c2 � x2) (2.8)

The constant c can be found by requiring that the total cross section area equals one:

c =

✓
3

2
cos↵

◆ 1
3

(2.9)

The width of the tow is w = 2c. Translating (2.9) back into physical values gives back
the total width of the tow:

w = (12 cos↵da2)
1
3 = (12Ah)

1
3 (2.10)

whereA is the tow cross section and h is the height or y-component of length d, h = d cos↵.
The general trend of theory and experiments appeared well in Wilson’s study. How-

ever, there was 15% di↵erence between his predictions and experiments, which was at-
tributed to neglecting friction and the natural entanglement or twist of the filaments. In
addition to these assumptions, Wilson makes further assumptions to translate the dimen-
sions of the equations. One outcome of these simplification is that the lateral height, h,
is the only geometrical dependency of the setup on the tow width in Wilson’s approach.
This means that if height, h, is kept constant, the theoretical spread width remains the
same and is independent of the tow length d. The experiments Wilson conducted were
very limited. Generally multiple spreader bars are required to achieve desirable level of
impregnation [29]. Irfan et al. [28] extended Wilson’s approach to predict the width, thick-
ness and profile of the bundle at the second spreader bar. They also conducted several
experiments, examining several parameters such as the bar diameter, tow length, angle
↵ and number of bars and compared those with Wilson’s approach. The measurements
were carried out under di↵erent tension conditions and they exceeded Wilson’s estimates
from 10% to 30% based on di↵erent conditions. In their study, in one case the e↵ect of
tow length, is examined while the angle ↵ is kept constant. As expected, since d cos↵, is
increased the width increases. It seems there should also be a correlation with the tow
length d. Therefore, the predicted tow spread should change when d and ↵ are changed
in a way that d cos↵ remains constant, while theory predicts otherwise; the tow width
remains constant in theory.
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Figure 2.3: Discretization of one filament or tow [30].

Figure 2.4: Digital chains and contact elements [31].

2.2 Numerical methods

There are other studies which have used commercial FEM software or developed their own
software to model tow deformation. The FEM method was used to model the deformation
and mechanical properties of braided and woven fabrics [32, 33].

Figure 2.5: Tow deformation under compression using digital elements [31].

In another study a procedure, similar to finite element analysis, was adopted. A
digital-element model was developed by Wang and Sun to simulate textile processes and
determine the micro-geometry of textile fabrics [30]. It models tows by a pin-connected
digital-rod-element chain. As the element length approaches zero, the chain becomes fully
flexible, imitating the behavior of tows (figure 2.3). Zhou et al. [31] developed a finite
element model based on the digital element model concept established by Wang and Sun.
They used a finite number of digital chains (<100) to represent filaments in a bundle,
rather than tows, and predicted tow geometry in woven fabrics using contact mechanics.
Contact between digital chains was modeled by contact elements (2.4). Displacement
of filaments inside a fabric was derived based upon the global sti↵ness matrix and the
boundary conditions. An example of a deformed tow using this method is shown in figure

10



2.5. The multi-chain digital element approach was used for the simulation of the two-
dimensional weaving and three-dimensional braiding processes. The yarn cross-section
shape inside the woven and braided fabric can be viewed section by section. The numerical
results were not compared to other methods or experiments. This model was also used
to simulate the impact and penetration of textiles [34], which corresponded well with
experimental results. However, they have not used this model to study its ability in
predicting tow deformation and to compare it with experiments.

2.3 Overview

Although Wilson does provide a quick prediction for tow spread, it seems that his model
fails to take many aspects of the deformation into account. In this study, a discrete
element model is implemented for this problem. Hopefully, with this model more realistic
factors of the deformation can be considered. The result of the two approaches will be
compared with each other and with the experiments to verify the applicability of the two
methods.
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Chapter 3

Experimental

Knowledge of tow deformation can help in many composite production processes as dis-
cussed in the introduction. It may prevent rich resin areas from occurring, help determine
the thickness of fiber reinforced structures and improve the resin impregnation process.
There are only few experimental studies on tow deformation. These studies focused on
relating the experimental analysis to an analytical approach [12,27,28]. This chapter ex-
plains the experimental aspects of this study, lays out the procedure for obtaining results
and presents the results. The purpose of the experiments is to first identify the important
mechanisms in tow spreading and also to obtain the spread of the filaments, the width of
the spread tow, under specific loading conditions. The results will be used to verify the
numerical results obtained in chapter 4. First the materials are introduced in section 3.1,
then the experimental setup and the experimental procedure are explained in section 3.2.
Finally, the results are presented and the mechanisms which a↵ect the tow deformation
are discussed in section 3.3.

3.1 Materials

The tow consists of several thousands of filaments which are bundled together. The tow
material used in this study are T300J, produced by TORAYCA. The properties of the
material provided by the manufacturer are summarized in table 3.1. The material was
obtained in two forms, with sizing and without sizing. Since TORAYCA only provides
the material with sizing (sized), the sizing was removed by TenCate under a thermal
decomposition process (desized). The sizing was epoxy based.

Sizings and finishes are a mixture of chemical compounds applied to the tow material
to protect the surface (e.g. coupling agent for glass fibers) and aid in handling (e.g.
binder, lubricant, antistatic agent). In order to remove the sizing the material undergoes
a chemical or thermal process. It should be noted that the filaments are easily damaged
when the sizing is removed.

Filament Diameter

An important characteristic of the tow material which may influence the model is the
polydispersity of the filament diameter. Only the mean of the filament diameter was
provided by the manufacturer. In order to measure this distribution, a short tow specimen

13
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Table 3.1: Torayca T300J carbon fibre tow properties provided by the supplier
Fiber properties Value Units
Filament diameter 7 µm
Tensile modulus 230 GPa
Tensile Strength 4210 MPa
Density 1.78 g/cm3

Elongation 1.8 %
Number of Filaments 3000 -
Cross Sectional Area 0.11 mm2

was spread out manually and mounted on the sample holder. The filaments were examined
using Scanning Electron Microscopy (SEM) (fig. 3.1). The radii of twenty filaments were
measured to obtain the mean and standard deviation of the diameter distribution. The
mean measured diameter was 6.99 µm and the standard deviation was 0.0956 µm with
a standard error of 0.0219. These statistical data are used in Chapter 3, to simulate
polydispersity in the model.

Figure 3.1: SEM picture of carbon filaments to obtain statistical values of the filament
diameter distribution.

3.2 Tow spreading Setup

The experimental setup of this study is straightforward and simple. In order to study the
spreading behavior of the tow, the tow is pulled over three bars and the width or spread
of the tow on the middle bar is measured (fig. 3.2). The bars on the side are identical
hence the setup is symmetric. Identical weights are attached to both ends of the tow and
they are left hanging as shown in fig. 3.2. The tows are tied to the weight holders. The
free length of the tow hanging from each side is at least 15 cm.

14



Figure 3.2: Left: The two side bars and the main middle spreader bar of the setup, note
that the setup is symmetric around the center bar, the notch in the side bars are visible.
Right: The setup as a whole with the tow tied to the weights.

One particular issue is controlling the boundary conditions. The tow should be kept
bundled together at the side bars to prevent the spread at those locations since it will
a↵ect the boundary conditions. For this purpose two identical bars were machined with
a small notch to guide the tow and prevent it from spreading. The notched bars can be
seen in fig. 3.2 (left). The notch prevents the tow from spreading at the side bars.

When the tow is mounted it spreads to some extent, but this is not the balanced
spread. The tow must undergo several tension cycles, until it reaches an equilibrium
degree of fiber spreading. Each tension cycle consists of pulling the weight of one side
down vertically and allowing the tow to move over the spreader bar. Then the procedure
is repeated on the other weight and then it is returned to the original position. Due to
friction at the side bars some filaments which are in contact with these bars will experience
negative strain. To prevent this the weights are gently pulled down to completely tension
the tow after the tension cycles. Irfan et al. [28] determined that the tow specimen they
used required six tension cycles to achieve the equilibrium. In this study, the sized tow
specimens required five tension cycles, while the desized tow specimens required only one
tension cycle to reach the equilibrium spread.

After achieving the equilibrium spread, an optical microscope was used to measure
the tow spread at the center spreading bar. The calibration procedure of the micro-
scope is explained in detail in Appendix A. The measurements were carried out using 4x
magnification.

A typical measurement of spread is shown in fig. 3.3. To obtain the width of the
spread the number of pixels from side to side is obtained and is multiplied by the length
per pixel. In this case the width of the tow is 2.09 mm. Due to resolution restraints the
edge cannot be exactly distinguished, which can lead to error. The edge selection error is
less than 12 pixels, therefore for the 4x zoom this would lead to an error of ± 0.01 mm.
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Figure 3.3: Typical measurement of a desized tow specimen spread over an aluminium
bar, h=20 mm and �=12.1 degrees, 4x zoom.

3.2.1 Geometry and Details of the Setup

The experiments were carried out for di↵erent geometries and distances. The relevant
distances are shown in fig. 3.4. The diameters of the side bars are neglected and assumed
to be very small. The distance from the center of the bar to where the tow is bundled
at the side bar is z

c

, the radius of the center bar is R, the length of the tow without
contact is d , and h and z are the y-component and z-component of the free tow length
d, respectively. For the experiments, first z

c

is kept constant while h, therefore also �,
is increased. Note that increasing h will reduce z. These measurements are also carried
out for di↵erent z

c

. For the central spreader bar, two types of material were used, a steel
bar with radius R = 3 mm and two aluminium bars with radii R = 3 mm and R=15
mm. After the bars were machined to obtain the desirable dimensions, they were polished
with 1200 grit sandpaper, in the direction parallel to the axis of the cylinders. The most
common surface roughness parameters of the three bars are shown in table 3.2. Before
mounting the tow on the setup the surface of the spreader bar was cleaned with acetone
and then ethanol to remove dust and fat.

Table 3.2: Roughness parameters of the three spreader bars.
Spreader bar S

a

(µm) S
q

(µm)
Aluminium R=15 mm 0.384 0.463
Aluminium R=3 mm 0.493 0.551
Steel R=3 mm 0.231 0.311

Boundary Conditions

The boundary conditions dictate the forces applied to the filaments. Being able to com-
pletely control the boundary conditions is complicated, and hence simplifications should
be considered. As much as the experimental procedure is concerned, there are several
issues such as how the tow is attached to the weight, the e↵ect of the contact of the tow
with the side bars and the total length of the tow. In this case the tow was attached to
the weights by tying a knot to the weight and the length of the tow hanging was 15 cm
on each side. With hope, it can be considered that the boundary condition is far away
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Figure 3.4: The geometry of the setup and the relevant distances.

enough not to a↵ect the measurement of spread at the spreader bar. In order to verify
this, the tow was clamped using clamps instead of tying a knot and also the hanging
length of the tow was increased from 15 cm. No variation in spread was observed with
these changes. Considering this, it should be safe to say that the tow deformation at the
center is only a↵ected by the side bars. Friction forces at the side bars were neglected.

3.2.2 Experiment parameter variation

A short summary of the experimental parameters are presented in table 3.3. In all ex-
periments, desized tow specimens were used, the tow was without twist and the weight
(or applied tension) was 200 g, unless specified otherwise. The code name of the steel bar
with radius R=3 mm is S3 and the aluminium bars with radii R=3 mm and R=15 mm
are Al3 and Al15, respectively. The procedure for applying these variations is explained
in the following section.

Table 3.3: Summary of the parameter variations
Variation z

c

(mm) h (mm) Bar No.a Remarks

Twist 96.2 10 Al3 4 Twists of 0, 10.1, 30.4 twists
per meter

Friction 96.2 10 S3,Al3 4 PTFE and graphite powder
applied to Al3

Sizing 96.2 5,10,20,30 Al3 5 With and without sizing
Tow tension 96.2 5,10,20,30 Al3 4 200, 400, 600 g weight
Geometry 35,96.2 5,10,20,30 Al3,Al15 6

a: Number of measurements or sample size.

Tow twist

Twist can occur in two forms, global twist and intra tow twist. Global twist can be
prevented and resolved to some extent. This can be done by holding one end of the tow
and allowing the tow to unwind itself. One possibility is to apply a global twist manually
and measure the e↵ect of the twist on the spread. This was carried out for a typical tow
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spread measurement. The tow was manually twisted and the spread was measured and
compared to the spread of an untwisted tow under the same conditions. A tow with a
length of 490 mm was twisted manually with five and fifteen complete rotations, which is
equivalent to 10.1 and 30.4 twists per meter, respectively. Identifying intra tow twist is
somewhat less straight forward than global twist. While some filaments may be parallel,
most filaments are probably displaced in the tow and cause twist in the structure of the
tow.

Friction variation

The tow spread was measured under three di↵erent frictional conditions in addition to
the normal condition. The bar and tow surface were treated prior to the tow spread mea-
surement. Graphite powder was used in one and PTFE spray in the other measurement.
PTFE Spray is a lubricant and anti adhesive medium for hygienical dry lubrication. Both
PTFE and graphite powder are used to reduce friction. Also measurements were carried
out using a steel spreader bar with diameter of 6 mm.

Tow specimen sizing

As stated previously the tow is provided in two forms, with and without sizing. The
sizing significantly prevents the filaments from spreading, which is probably caused by
an increased cohesion between the filaments or in other words causing them to stick
together. Experiments are carried out with the sized and desized tow specimens with
di↵erent geometries.

Tension variation

In order to vary tension, several dead weights were used. The measurements were carried
out with weights of 200, 400 and 600 grams on each side. When higher weights were used
filament damage became very severe so that the measured values were not consistent,
especially since the desized specimens are vulnerable to damage.

Geometry variation

The location of the side bars, z
c

, and the height of the center bar was varied. In addition
to that two spreader bars with di↵erent radii were used.

3.3 Results and Discussion

In order to extract the tow deformation behavior and the factors and mechanism which
have the most impact, several measurements were carried out under di↵erent conditions.
The result for the following variations will be presented in this section.

• Twist of the tow

• Friction
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• Tow sizing

• Tow tension

• E↵ect of the geometry

3.3.1 Results

The results are briefly presented here and discussed in the following section. The plots
are provided with error bars which indicate the standard deviation of the measurements.

Figure 3.5: Spread of the tow with di↵erent degrees of twist.

Figure 3.6: Spread of untwisted, desized tow

The results of the spread are shown in fig. 3.5 for di↵erent degrees of twist. An example
of the three twist conditions are shown in fig. 3.6, fig. 3.7 and fig. 3.8 which are with 0,
10.1 and 30.4 twists per meter, respectively. When the original tow was used without
twist the average spread of the tow was measured to be 1.89 mm. However, when five
rotations were applied to the tow the spread was reduced to 1.63 mm. The twist is not
very evident from fig. 3.7, however, the spread has been reduced by about 15 percent.
When fifteen rotations were applied to the tow, the spread reduced to 1.14 mm. The twist
is evident from the microscopic image, since the filaments are not oriented straightly.
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Figure 3.7: Spread of twisted, desized tow
with 5 complete rotations, 10.1 twists per
meter.

Figure 3.8: Spread of twisted, desized tow
with 15 complete rotations, 30.4 twists per
meter.

The results for the friction variation is shown in fig. 3.9 and the spread of the sized and
desized tow specimen is plotted in fig. 3.10. The measurements using di↵erent weights is
presented in fig. 3.11 and the e↵ect of geometrical aspects is shown in fig. 3.12.

Figure 3.9: Tow Spread under di↵erent surface conditions.

3.3.2 Discussion

In order to better model the deformation of the tow, it is crucial to identify the main
mechanisms which play a role in deformation and spread of the tow. These mechanisms
dictate how the forces are applied on the filaments and hence the final shape of the tow.
The main mechanism which are discussed are the geometry of the setup, twist, friction,
sizing, tow tension and boundary conditions.

Mechanisms governing deformation

As pointed out in this chapter, several mechanisms play a role in tow deformation. Some
mechanism were found to play little or no role in tow deformation. It was determined that
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Figure 3.10: E↵ect of sizing on the tow spread.

Figure 3.11: Spread as a function of tension using three di↵erent weights, or under three
di↵erent tension conditions.

tow spread is independent of the tow tension in the tested tension range. Considering the
materials and lubricants used in this study, no dependency was observed regarding the
e↵ect of friction on tow deformation. In order to make a better judgement several types
of material with di↵erent roughness should be used to confirm the independence of tow
spread of friction.

On the other hand several parameters displayed strong variations on tow spread. Twist
may greatly influence tow deformation depending on the amount of twist. Sizing also plays
an important role in tow deformation. By keeping the filaments together sizing signifi-
cantly reduces spread. The geometrical aspects of the setup were yet another important
factor. It was observed that tow spread can be maximized by reducing the spreader bar
diameter and increasing the tension gradient in the tow.

Twist

The results of the tow spread under di↵erent twist conditions (fig. 3.5) clearly show
the e↵ect of twist on tow deformation. As expected twist prevents the filaments from
spreading. Since the tow is twisted the filaments are bundled together. Depending on
the amount of twist, twist will have an e↵ect similar to shortening the tow. The normal

21



Experimental

Figure 3.12: Tow spread under di↵erent geometrical conditions, with aluminium spreader
bars with R=3 mm and R=15mm.

component pressing the filaments down stays constant while the lateral force holding the
tow together increases. The purpose of discussing twist is not to quantify the e↵ect of
twist but to give an approximation of its e↵ect. Dire care should be taken when handling
the tow before measurement to prevent twist.

Friction

As in all mechanical systems friction is present and will inevitably a↵ect the final de-
formation and spread of the tow. Two types of friction exist, the friction between the
surface of the bar and the filaments, and the friction between the filaments themselves.
The friction between the surface and the tow is dictated by the roughness and the material
of the spreader bar. Comparing the spread using the di↵erent spreader bars in fig. 3.9,
the small di↵erence between the two can be neglected considering the error bars. How-
ever, when PTFE spray was applied to the aluminium bar and tow surface, tow spread
reduced. This is probably due to the capillary e↵ect of the spray, since it was oil based.
As the lubricant particles penetrate and wet the filaments, it builds up adhesion, which
in turn keeps the filaments together. When graphite powder was applied to the surface
no significant change was observed in tow spread. The outcome was that the measured
spread was similar for the original condition without using lubricants and with using lu-
bricants. Although, deriving a solid conclusion is very di�cult from this observation, but
two possibilities exist. Either these lubricants did not have any e↵ect on friction or the
friction was already low and the lubricants could not further reduce it, or the spread of
the tow is independent of friction altogether.

Sizing

Sizing significantly reduced the tow spread as shown in fig. 3.10. The spread of the tow is
26 to 33 percent higher for the desized tow compared to the sized tow. The sizing increases
cohesion between the filaments causing them to stick together, therefore reducing spread.
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Obviously, if a sizing with higher stickiness and binding e↵ect is used, the spread of the
tow would decrease even further.

Tension

Considering the e↵ect of tension on tow spread, the results are within close range for
the three weights which were used (fig. 3.11) and do not follow a specific trend and
the variations are not significant. Hence it can be assumed that the spread is indeed
independent of the applied tow tension in the range of the applied weights.

Although, if a larger range of tension is tested, some trend may be observed. The
results will be more accurate if the side bars and the spreader bars are free to rotate, to
reduce friction at those locations.

Geometry

One of the most important aspects of the experiments was studying the e↵ect of geometry
on tow deformation. The tow deformation for four di↵erent geometrical conditions is
shown in fig. 3.12. The general trend is that as height h increases the spread increases.
This is due to the fact that the normal component which forces the filaments down goes
higher.

First the e↵ect of spreader bar diameter is discussed. At constant horizontal clamp
distance, z

c

, for a smaller spreader bar diameter, the spread is larger. Therefore if the
spreader bar has an infinitesimally small size the tow spread is expected to increase. This
can be explained by considering how the forces are applied on the filaments. The normal
force component is equal for the small and large spreader bar. However, the normal force
per unit length is di↵erent for di↵erent sizes. The normal force per unit length, f

n

is
derived in section 4.2 as:

f
n

=
T
i

R
(3.1)

where T
i

is the tension applied on filament i. It is clear that as R increases, f
n

is reduced.
This means that the normal force is applied on a longer length. This may be the possible
explanation for the di↵erence, since the load distribution varies with the two conditions.
It should be noted that since the DEM model only predicts the deformation of one cross
section it is favorable to conduct the experiments with a small as possible spreader bar.

The second observation can be made when the result of similar spreader bars with
di↵erent z

c

are considered, when z
c

is reduced, the spread increases. As z
c

is reduced the
normal load component increases, however, at the same time the lateral force component,
preventing spread and holding the tow together, also increases to the same extent (this
is explained thoroughly in Chapter 4). From this, it is expected that the spread remains
constant. However, as z

c

is reduced, the contact angle 2� increases. The filaments at the
bottom close to the bar surface have lower tension compared to the filaments stacked on
them. This is due to the fact that the bottom filaments are less strained compared to
the filaments at the top of the tow. Two filaments in a tow are shown in fig. 4.10. From
the figure it is clear that as � increases the upper filament will experience higher strain
compared to the lower filament. This will cause a gradient in the tension of the filaments
based on where it is located. This gradient increases as � grows. Since the filaments on
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Figure 3.13: Two filaments are gripped at points a and b. The stacking has been exag-
gerated.

the top, have a higher tension, they will push down further causing the tow to spread.
As they move down their strain is reduced and the tension gradient becomes smaller.
The filaments which spread sideways are also strained which prevents excess spread up
to some extent. The strain dependent behavior is discussed thoroughly in section 4.3.1.

3.4 Summary

In this chapter, the experimental side of this study was discussed. After introducing the
setup, di↵erent experiments were designed to study the e↵ect of di↵erent parameters on
tow spread. In the tested range, no observable influence was observed regarding fric-
tion and tow tension. However, twist, sizing and geometry were found to have a strong
influence. Twisting the tow and the addition of sizing reduce tow spread.
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Chapter 4

Discrete Element Method

This chapter introduces the basics of the Discrete Element Method (DEM) and presents
a model to characterize the deformation behavior of a tow cross-section. A tow consists of
several thousand filaments which are bundled together. In order to predict the spreading
behavior of the filaments using DEM, it is necessary to determine several parameters and
the model’s level of complexity. Several conditions can be considered and assumptions
be made, each with various levels of simplification. In this study, a two dimensional
approach is used in which one cross section of the tow will be modeled. An example of
a tow cross section is shown in fig. 4.1. In the DEM model the particles represent the
circular filaments in the figure.

Figure 4.1: Microscopic image of a tow cross section. The bright circles are the filaments
which are round. Imperfections are due to the polishing process, were the filament edges
were chipped o↵.

First, the fundamentals and necessary parameters of a DEM model will be explained
in section 4.1. Afterwards, a simplified model which corresponds with the experiment will
be devised in section 4.2. Subsequently, additional features, such as strain dependence
of tension, polydispersity and cohesion are added to the model and the e↵ect of these
features are discussed in section 4.3. Continuum quantities such as stress and pressure
will be explained in section 4.4 and some continuum fields will be extracted and plotted
for one setup. Finally, in section 4.6, a model which includes all relevant features will be
implemented for comparison with experiments.
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4.1 Introduction to DEM

A DEM simulation consists of a system of n particles with an initial position and velocity.
At each time step the force on each particle is calculated. The most prevalent and impor-
tant forces are those arising from collision, gravity, friction or other body forces applied to
the particles. All of the forces are added up to obtain the total force on each particle. In
every time step, the acceleration, velocity and position of each particle is obtained using
Newton’s equation of motion:

m
i

�!̈
r
i

=
�!
F
i

(4.1)

where m
i

is the mass of particle i with position �!r
i

and acceleration
�!̈
r
i

and subject to force�!
F
i

. The new positions and velocities are calculated for the next time step and the process
is repeated. However, the time step must be chosen carefully to satisfy some conditions,
which will be discussed shortly.

4.1.1 Physical interpretation

In reality when two particles, in this case filaments, are pressed together, they deform and
their surfaces flatten (fig. 4.2 a). If the deformation is elastic, the two particles will repel
each other, exerting an opposing force on the center of mass of the particles. In order
to calculate the exact deformation, intensive formulation of stress and strain relations
must be carried out. Since it is di�cult and computationally expensive to model the
deformation of the contact an alternative method is used in DEM in which the particles
are allowed to penetrate each other, repelling each other as they overlap (fig. 4.2 b).

a b

Figure 4.2: Schematic graphs of a) how the particles deform in reality, b) particle overlap
in DEM

Two particles i and j, with diameter d
i

and d
j

, respectively, interact only when they
are in contact so that their overlap � = 1

2

(d
i

+ d
j

) � (�!r
i

� �!r
j

).�!n is positive, with the
position vector �!r

i

of particle i and the unit vector �!n = (�!r
i

��!r
j

)/|�!r
i

��!r
j

| that points
from j to i (fig. 4.3). The symbol ‘.’ denotes the scalar product of vectors.

There are several contact models that can be used to relate the contact force to the
overlap. In this study a linear spring-dashpot model [35–37] is used to give the contact

force,
�!
F c

ij

=
�!
F

n,el

+
�!
F

n,diss

, exerted from particle j to particle i, which is consisted of an
elastic and a dissipative term.

The repelling force depends on the overlap, �, and a spring constant, k, representing
the sti↵ness of the particles. The elastic force

�!
F

n,el

is written as:

�!
F

n,el

= k��!n (4.2)
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Figure 4.3: Definitions and distances of particles i and j used for the description of the
force laws

One of the key features of granular materials is the dissipation of energy due to inter-
particle collisions i.e. the transfer of kinetic energy into internal degrees of freedom of
a particle and finally into heat. In order to introduce dissipation into the system, one
assumes a viscous damping proportional to the relative velocity in the normal direction:

�!
F

n,diss

= ��!v (4.3)

where � is the damping constant and �!v = �(�!v
ij

.�!n )�!n = �((�!v
i

��!v
j

).�!n )�!n .

The dissipation is quantified by the coe�cient of restitution ✏ which is defined as the
ratio of the post-collissional velocity, vf (final), to the pre-collisional velocity, vs (start),
in a head on collision between two particles i and j:

✏ =
vf
i

� vf
j

vs
j

� vs
i

(4.4)

The coe�cient of restitution can also be written as:

✏ = exp

✓
� t

c

�

2m
ij

◆
(4.5)

where m
ij

= m
i

m
j

/(m
i

+mj) is the reduced mass. Note that eq. (4.4) and eq. (4.5) give
the same results. The coe�cient of restitution equals 0 for a completely inelastic collision
and becomes 1 for a perfectly elastic collision. This can be easily verified by simulating
the evolution of one particle. The coe�cient of restitution can be obtained by dividing
the two subsequent positive and negative peak velocities.

This model is analogous to inserting a spring and dashpot between the particles. The
contact force exerted on particle j from particle i is similar but in the opposite direction,�!
F

ji

= ��!
F

ij

. Note that the sti↵ness and damping coe�cient of all particles are similar.
This model is known as the Kelvin-Voigt model in materials science. Other forces such
as, body forces arising from the continuity of the tow, can be added to these forces.
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Figure 4.4: Linear spring-dashpot model

Virtual Damping

Usually in DEM simulation the particles are enclosed by boundary conditions or walls. In
this study, the particles are only restricted from one direction and the particles are free to
move in other directions. When the simulation starts, the particles scatter very quickly
due to high kinetic energy. As the kinetic energy is damped out, the filaments regather
and bundle up together again. This not only increases the simulation time, but alters
the final solution of the problem, since when the fibers gather they will not achieve the
statically balanced condition. The static condition can be achieved by causing a small
disturbance to the system of particles, which will cause the particles to restructure.

It is favorable that the particles spread out by shear banding rather than scatter-
ing. The microscopic mechanism of shear banding has been extensively studied [38–41].

Considering these, a virtual viscous damping,
�!
F b is also applied to the particles,

�!
F

i

=�!
F b

i

+
�!
F c

ij

. The virtual damping force,
�!
F b, which is applied to each particle separately is

defined as:

�!
F b

i

= �b.
�!̇
r

i

(4.6)

where b is the virtual damping coe�cient and
�!̇
r

i

is the velocity of particle i.
Initially the model does not include friction. Altering this virtual damping will have

an e↵ect on the final solution. Hence, it can be assumed that this viscous e↵ect can mimic
dynamic friction to some accuracy. The main di↵erence between friction and damping
is that friction brings the system of particles to a stop while viscous damping reduces
the kinetic energy but does not completely stop the evolution of the structure. If it is
required to remove the damping, for instance for purpose of adding friction, the virtual
viscous damping can be applied and when the particles are bundled together at the wall,
b can be set to zero. Also note that the virtual damping further reduces the coe�cient of
restitution.

4.1.2 Time-step optimization

An important aspect of DEM simulations is to choose a correct time step. Choosing a large
time step will lead to errors that will cause the energy of the system to increase irrationally
and will cause the solution to ‘explode’. When the time step is chosen too small, the
simulation has to run for a too long time to obtain reasonable results. Therefore, the time-
step should be optimized. For this purpose the contact time of a collision is considered
and as a principle, in order to accurately describe the collision, approximately 50 time
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Figure 4.5: The e↵ect of virtual viscous damping on the final spread, n = 500, h = 10
mm, � = 6 degrees, k=10 kg/s2, �=1 kg/s.

Figure 4.6: Deformation of particles by shear banding during the evolution of structure.

steps are required from the instance they come into contact until they separate [36]. The
contact time of a collision is described by:

t
c

=
⇡

!
(4.7)

where ! is the natural frequency of the contact. The natural frequency of an under-
damped system is a function of the natural frequency and the damping ratio.

! =

r
2k

m
� ⇣2 (4.8)

where k is the sti↵ness and ⇣ is the rescaled damping coe�cient, ⇣ = �/m. In order to
verify that eq. (4.8) is correct, two particles are pressed together and allowed to oscillate
while in permanent contact. From the simulation results (time from peak to peak) the
frequency can be obtained which should be equal to eq. (4.8).

From this, the selected time step is:

�t ⇡ t
c

50
(4.9)
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Since the simulation would run continue for further time steps, also an end condition
must be defined when the simulation can stop.

4.1.3 Stability condition

In order to determine when the simulation has ended a criterion or a set of criteria must
be defined. In this case the simulation is considered complete when the particles do not
move anymore and have become stable. Several criteria can be defined in this case [42,43].
One criteria which is used often is the ratio of kinetic to potential energy. When this ratio
falls below a predetermined amount, the simulation can be considered finished and that
no considerable evolution will take place anymore.

The evolution of the solution, which is the spread of the particles, and its energy ratio
is plotted in fig. 4.7. The evolution stopped after the energy ratio dropped below 10�3

after which no significant evolution took place in the structure. The used ratio in this
study is 10�5. In order to prevent the simulation from stopping at local values the average
of this ratio should remain below the cut o↵ value for the last 5000 time steps.

Figure 4.7: The spread of the particles and the energy ratio plotted together as a function
of time step.

4.1.4 Particle Properties

The DEM model does not have a unit system. Therefore it is critical to ensure that chosen
units are consistent. The fundamental units for this research are:

• Mass m
u

, specified in kg

• Length x
u

specified in m

• Time t
u

specified in s
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Occasionally, input algorithmic parameters that belong to dynamic simulations (e.g.,
damping, fictitious mass) are assigned values without any physical or mathematical justi-
fication, in some instances with the sole purpose of attaining a steady-state or quasi-static
solution. One could argue that computational expense and spurious parameter calibration
have prevented the method from penetrating practice further. In the case of computa-
tional expense, it is expected that full-scale computations using DEM will be possible in
the next twenty years [44]. Since the dynamics of the problem are not the goal of this
study and the final solution is static, fictitious values are assigned to the parameters. To
obtain actual values these parameters should be scaled accordingly.

Table 4.1: DEM parameters, symbols and typical values

Parameter name Symbol Dimensionless Value SI unit
Particle mass m 1 kg
Particle radius a 0.0000086 m
Particle Sti↵ness k 10 kg/s2

Viscous dissipation � 1 kg/s
Virtual damping* b 0.1 kg/s
Coe�cient of Restitution ✏ 0.57 -
Number of particles N 500 -
Collision time t

c

0.721 s
Modulus of elasticity E 230 kg/(ms2)

* fictional parameter.

Typical values assigned to these parameters are presented in table 4.1. If it is required
to use another value other than that stated in table 4.1 it will be indicated separately
wherever required.

The justification for the specific particle radius a, is that since a typical tow used in
the experiments has 3000 filaments with an average diameter of 7 µm and the simulation
consists of 500 particles, the radius of the particles is chosen in a way that

P
500

i=0

⇡a2 =P
3000

i=0

⇡(7
2

)2.

4.2 Simplified Model

In this section, the applied loads in the experiments are extracted and translated to the
DEM model. Initially a simple model is developed and the results for this model is
presented. In the next steps, several of the neglected features are introduced to make
the model more realistic, and the e↵ect of these variations are discussed. The simplified
model assumptions are as follows:

• Constant tension on all filaments

• The contact length and contact angle is small and the spread is constant on the
contact length, i.e. one cross section is su�cient
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• Friction is neglected

• Filaments are clamped at a single point and there is no twist

• All filaments have the same radius (monodisperse particles)

4.2.1 Geometry

The geometry of the problem is critical due to the fact that it will determine how the
forces are exerted on the particles. Since the cross section of the tow is modeled and
the tow is continuous, forces arising from the tow continuity are applied to the filaments.
The filaments, which are in contact with the spreader bar, will be modeled as cylindrical
elements with radius a and height h

p

and the forces will be applied to these elements.

Figure 4.8: Side view of the experiment setup showing the geometry and the relevant
distances used in the model.

In this setup a single tow consisting of n filaments is pulled over a spreader bar with
radius R and makes an angle � with the horizontal, as shown in figure fig. 4.8. The
distance of the clamp to the center of the spreader bar is z

c

. The filaments converge to
one point at length d where they are fixed at that point. Note that d is the length of
the tow from where it leaves the spreader bar to the clamp and h and z are the y� and
z-components of d, respectively. The tow is pulled from both ends with force T and the
wrap or contact angle of the tow over the spreader bar is 2�. First a small contact angle
will be modeled where 2� ⌧ ⇡. As the tow is pulled over the bar, a normal component is
introduced, pressing the filaments against the bar forcing them to spread. The boundary
condition of the tow will constrain the tow, preventing the filaments from leaving the bar
in the y-direction or spreading in the x-components. Therefore, there is a force on the
filaments forcing them to spread and there is a force preventing spread which will allow
for force equilibrium solutions. In the following, the forces acting on the filaments are
determined.

4.2.2 Tensional Force

The tow is pulled over the bar with tension T from both ends. The friction between the
tow and the bar is neglected, therefore tension is constant throughout the length of the
tow. The simplest assumption is to consider that the tension on the tow is distributed
evenly between all filaments. Therefore the tension on each filament will be T

i

= T/n.
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The tension introduces a normal and lateral component. These components are acting on
each filament cross section individually.

4.2.3 Normal force

When the tow is tensioned over the spreader bar, a normal component presses the tow
against the bar causing the tow filaments to spread. The larger the normal component
becomes, the more the tow is expected to spread.

Figure 4.9: An infinitesimally small section of contact with normal force F
n

.

An infinitesimally small section of the contact of one filament is shown in fig. 4.9.
From the load balance in the normal direction we have:

F
n

= 2T
i

sin

✓
d✓

2

◆
⇡ 2T

i

d✓

2
= T

i

d✓ (4.10)

The length of this infinitesimally small filament is:

dl = Rd✓ (4.11)

From this, the normal force on a unit length of this filament is:

f
n

=
F
n

dl
=

T
i

d✓

Rd✓
=

T
i

R
(4.12)

Note that lower case f is used for the normal force per unit length. This shows that
the normal force on a unit length of a filament is independent of the wrapping angle and
only depends on the radius of the bar, R, and tension T for small values of ✓. The normal
and lateral forces exerted on filament segments of length dl should be analogous to one
another. This means that if the normal force per unit length is used, for the lateral force,
the force per unit length should be used too, as shown below.

4.2.4 Forces applied in DEM model

Initially the filaments are clamped at a single point as shown in fig. 4.10 and the fibers
converge to a single point. Two filaments are shown in the figure. Filament 1 is closer to
the bar surface while filament 2 is further away due to the stacking. Note that the tow can
also displace laterally in the x direction as shown in fig. 4.11. The force components are
separated since small angles and decoupling are assumed. In order to obtain the normal
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and lateral forces applied to each filament, tension, T , should be decomposed to its x�
and y-components. The y-component of the tension for filament 1 is �Th

1

/d
1

. Since it
is applied from both sides, the normal force on the surface becomes:

F
n

= �2T
h
1

d
1

(4.13)

Figure 4.10: Two filaments are gripped at points a and b. The stacking has been exag-
gerated.

The length d
i

of any filament can be obtained since the x, y and z-components are
known, d

i

=
p

x2

i

+ y2
i

+ z2
i

. Since filament 2 has di↵erent y-component and length, the
normal force component will di↵er for that filament.

Figure 4.11: Top view of the setup displaying filament spreading.

Without a force to keep the tow together the particles can freely move away from
each other and completely spread out on the surface. The main force holding them
together is that of the boundary condition. As a filament spreads out an x-component
force is introduced which prevents it from further spreading. The x-component or lateral
component is:

F
l

= �2T
x0
i

d
i

(4.14)

As shown in fig. 4.11, x0 is the lateral deflection distance from the clamp.

4.2.5 Initialization

An initial condition is required for starting the simulation. For these simulations it is
considered that the tow is bundled together in a circular form as show in fig. 4.12. Initially
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only a few bottom filaments are touching the lower wall. The simulation is started with a
small height h and large virtual damping v

d

to prevent chaotic movement of the filaments.
This will cause the filaments to gently move down and rest on the lower wall. When the
filaments come to rest and the kinetic energy is damped out, this condition (fig. 4.13)
will be used as an initial condition for the simulations. In each step of the simulation
h is incremented and the resulting spread is recorded. After each increment the final
results are used as an initial condition for the next increment. So the end result for the
simulation where h=5 mm is the initial condition for the simulation where h=10 mm.
This will reduce simulation time and will help achieve shear banding, the preferred way
of structure change (section 4.1.1).

Figure 4.12: Initial circular condition of the filaments.

Figure 4.13: Filaments rested on the surface used as the initial condition.

Example

A system of particles is modeled as an example. The resulting spread of the particle
system is shown in fig. 4.14 when h = 5 mm and � = 3�. The spread width of the tow,
w, is determined as the distance from the far left particle to the far right particle plus the
diameter of one particle.
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Figure 4.14: A sample simulation carried out for a system of 500 particles with h = 5 mm
and � = 3�.

4.2.6 Results of simplified model

In order to demonstrate the behavior of the simplified model, the center to clamp distance,
z
c

, is kept constant while the height, h, is increased. The results are shown in fig. 4.15.
As expected, the tow spread increases with h since increasing h will increase the normal
component force, F

n

, pushing the filaments into the surface with higher force. This means
that the load equilibrium requires the tow to spread further as h increases.

Figure 4.15: Spread of the tow as a function of height h, center to clamp distance z
c

= 96.2
mm.

4.2.7 Number of Particles

The actual tow specimen has 3000 filaments, whereas for computational convenience only
500 particles were used to model the spreading behavior and the particles size was scaled
to represent the actual system. One may argue that the spreading behavior of 500 particles
does not represent the tow which has 3000 filaments. In order to investigate the e↵ect of
the number of particles, a system with 1000 particles was simulated using the simplified
model. The results of the two systems with di↵erent number of particles was similar as
shown in fig. 4.16. This means that as long as the number of particles are enough to
o↵er an acceptable resolution, they will yield similar results. However, there surely is a
critical number of particles, from which below that number the system is not represented
correctly, especially when h increases.
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Figure 4.16: Spread of the particles as a function of height h for two systems with 500
and 1000 particles, z

c

= 96.2 mm,.

In the next section, some of the simple assumptions will be replaced with more realistic
models and the results will be compared to the simplified model.

4.3 Model Improvement

In the previous section, several assumptions were made to simplify the tow deformation
model. In this section other features will be added:

1. Strain dependence of tension

2. Boundary particles and twist of filaments

3. Particle Radius Polydispersity

4. Cohesion of particles

5. Surface friction

After each model improvement is presented, the results of that model will be compared
with that of the simple model.

4.3.1 Strain dependence of tension

Previously, it was assumed that tension is constant throughout all filaments. However,
the tension depends on the elongation of the filaments and not all filaments have the same
tension. This e↵ect is increased when fibers with higher modulus are used, since a small
di↵erence in strain results in a significant di↵erence in stress. The most obvious di↵erence
in length or strain arises from the fiber stacking. From fig. 4.10, it is clear that fibers with
larger x and y-components are strained more than fibers close to surface of the spreader
bar.
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To calculate the length of the filaments, the length of the section which is not in contact
with the bar, 2d

i

, should be added with the length of the filament wrapped around the
bar, hence L

i

= 2(d
i

+�R0). R0 is the radius of the bar plus the stacking e↵ect of the tow.
The initial unstrained length is defined as L

0

= 2(d + �R) and the elasticity modulus
of the material, E, is provided by the material supplier. In the simulations the actual
modulus of the material was used, E= 230 GPa, and the unstrained length, L

0

, was
chosen as the length of the tow between the two clamps. Alternatively an o↵set value, L

e

can be added to the initial and strained length to represent the extra hanging tow from
both sides. The e↵ect of this term is reducing the sti↵ness of the filaments. From this
the tension in the filaments can be easily obtained from:

T
i

=
L
i

� L
0

L
0

+ L
e

EA
i

(4.15)

where A
i

= 2⇡a2
i

is the cross section of each filament, calculated from its radius. The
total tension of the tow is T

t

=
P

n

i=1

T
i

. Since it is desirable to have a determined tension
in the tow the strain of the tow should be adjusted to obtain the total tension, T̃ . if T

t

is smaller than T̃ , all of the filaments are strained further to reach the determined strain.
The extra displacement required to reach T̃ is:

�L =
T̃ � T

t

nEA/(L
0

+ L
e

)
(4.16)

Figure 4.17: Spread of the tow as a function of height h, for the simple model and the
strain dependent model for two di↵erent sti↵ness, z

c

= 96.2 mm.

However, if T
t

is larger than T̃ , the extra strain should be taken o↵ the filaments.
This is not as straight forward as before since the least tensioned filaments already have
a very small strain or tension and may obtain negative strain. Since filaments cannot
endure compression the tension of those filaments should be set to zero as long as they
have negative strain.

The results of the strain dependent model is presented in fig. 4.17 and compared to
the simple model. For the high sti↵ness model L

e

=0 mm and for the low sti↵ness model
L
e

=300 mm, which corresponds to the extra hanging length of the tow from the side bars
in the experiments. At small heights h, the result of both models are similar. This is
due to the fact that at small h the contact angle is small and therefore the gradient of
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Figure 4.18: Spread of a strain dependent model displaying the tension di↵erence between
the filaments.

tension is less. As h increases the tension gradient increases. Therefore, filaments stacked
at the top have a larger normal force component and cause the tow to spread further.
The tension gradient is shown in fig. 4.18. The tension gradient is larger in the y-direction
compared to the x- direction, this is due to the fact that displacement in the y-direction
results in a larger strain or elongation.

The tension in each filament can also be used to determine filament failure. Since
the tensile strength of the material,�

T

is known, the maximum tension filament i can
carry can be easily obtained using Tmax

i

= �
T

A
i

. In this study this aspect will not be
investigated in detail, but the tension did not exceed the maximum tensile strength of the
filaments and was much smaller than that value in the worst case scenarios.

4.3.2 Boundary conditions

The boundary condition at the end of the can tow play a role on the lateral force. The
initial assumption was that the filaments converge to a single point, while in reality, they
have a specific shape at the boundary. In this case the force component calculation and
fiber length calculation will di↵er. It will be assumed that the tow has a circular form at
the clamps similar to the initial condition (fig. 4.12). Each filament is associated with a
clamped filament at the boundary. The starting formation of the simulation is the same
as the formation of the filaments at the clamps. This will change the lateral and normal
force components to the following:

F
l

= �2T
x0
i

� xclamp

i

d
i

(4.17)

F
n

= �2T
h
i

� hclamp

i

d
i

(4.18)

where xclamp

i

and hclamp

i

are the x� and y�components of the filament position at the
clamp, respectively. The free contact tow length will become,

d
i

=
q

(x
i

� xclamp

i

)2 + (y
i

� hclamp

i

)2 + z2
i

(4.19)

Similar to the simplified model, simulations have been carried out with a constant z
c

and varying the height h. The results of the simulation for the actual boundary model is
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Figure 4.19: Comparison of the spread width of simple model with the actual boundary
model, z

c

= 96.2 mm.

presented in fig. 4.19. The trend is completely similar to the simple model except for an
o↵set. This is due to the e↵ect of a reduced lateral constraint on the filaments, allowing
them to further spread.

4.3.3 Twist

This model is similar to the previous model, only that the initial formation of the fila-
ments are di↵erent to those at the boundary. For this purpose, the filaments have been
randomized at both of the clamps. When the simulation begins, the corresponding fila-
ment of the simulation will be another filament at the clamp. Altogether, there are three
filament formations, one is used as an initial condition for the simulation and two are
used to represent the side bar filaments. An example of randomized filaments is shown in
fig. 4.20. The three colored particles correspond to each other. The rest of the filaments
are also randomized, which is not displayed in the image. The same equations, eq. (4.18)
and eq. (4.17), hold for this condition. The e↵ect of the randomization can be seen in
xclamp

i

and hclamp

i

. It can be said that the filaments are no longer parallel in the initial
condition and that they have some twist.

Figure 4.20: Three filaments have been colored to show how they correspond to each
other.

The results of the simulation for the twist model is presented in fig. 4.21. The ran-
domization at the clamps has reduced the spread to the simple model. As noted before,
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Figure 4.21: Comparison of the spread width of the randomized particle model with the
simple and actual boundary model, z

c

= 96.2 mm.

the actual boundary condition caused an o↵set to the spread, while the randomization
has nullified the o↵set of the actual boundary model mimicking twist.

Another approach for twist is to apply a rotation to the clamp filaments at both sides.
This can represent twist in the tow specimen. To apply a twist of ', the original formation
is twisted -' for one side clamp and +' for the other.

Figure 4.22: Spread of the tow as a function of the twist angle at the clamps, z
c

= 96.2
mm, and height h=10 mm.

The simulations were carried out for one geometrical setup while the twist was applied.
The twist varied from '=0 degree, without twist, to '=180 degrees. The results are
plotted in fig. 4.22. It can be seen from the plot that the spread decreases as the twist is
increased, as expected. The e↵ect of twist is more significant from '=60 degrees to '=150
degrees. When the tow is twisted further after '=150 degrees, the spread increases to
some extent.

4.3.4 Polydispersity

In reality the filament radii are not monodisperse, but they have a radius distribution.
Such a system can be modeled with bi or polydisperse particles. Since the filament radius
distribution has already been obtained (section 3.1), those values will be used to study
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the e↵ect of polydispersity. In the simulations less particles are used with larger radii,
therefore, the standard deviation is scaled accordingly, stdev(const.a) = |const|.stdev(a).
To model the polydispersity, a normal distribution of particles has been created using the
measured average and standard deviation. The polydispersity is characterized using the
moments of the particle size distribution [45–47]. For a polydisperse system, distributed
according to a probability function f(a) the k-th moment is defined as

⌦
ak
↵
=

R
akf(a)da

and the dimensionless moments are:

A =
hai2

ha2i O
1

=
hai ha2i
ha3i O

2

=
ha2i3

ha3i2
(4.20)

A is know as the dimensionless width correction.
One may argue about the type of distribution of the particle size and that it may

influence the outcome. In order to investigate the e↵ect of the type of distribution, a
bidisperse system with similar dimensionless moments are implemented. Ogarko and
Luding [45] presented a formulation to obtain an equivalent bidisperse system. A bidis-
perse system, with radii a

1

and a
2

, with N
1

and N
2

the number of particles of each kind,
and N = N

1

+ N
2

. Thus the mixture can be classified by two parameters, the compo-
sition n

1
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1

/N and the size ratio R
s

= a
1

/a
2

. The radius ratio and composition of
the equivalent bidisperse system is R

s

=0.973 and n
1

=0.5. The k-th moment is defined as⌦
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↵
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1

ak
1
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2
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2

.

Table 4.2: Summary of simulated particle distributions
Particle size hai (µm) ha2i (µm2) ha3i (µm3) A O

1

O
2

Monodisperse 8.57 73.5 630.13 1 1 1
Polydisperse 8.57 73.459 629.775 0.9998 0.9996 0.9994
Equivalent Bidisperse 8.57 73.514 630.48 0.9998 0.9996 0.9994
Bidisperse 2 8.57 73.704 635.37 0.9972 0.9945 0.9918

In addition to the original filament distribution, a bidisperse system with a higher
ratio R

s

= 0.9 and composition N=0.5 was also simulated. The moments of the systems
are presented in table 4.2. The results of the simulations are shown in fig. 4.23. The first
observation is that the monodisperse system has the lowest spread. The polydisperse and
its equivalent bidisperse system have similar results and their plots overlap (explaining
why the polydisperse plot is not very visible), proving that the spread is independent of
the type of distribution and only depends on the moments of the distribution. These
two systems also had the ordered crystalline form similar to the monodisperse system.
However, the bidisperse system with a larger radius ratio yields a significantly larger
spread. It was also observed that the structure had lost its crystalline form at this radius
ratio distribution.

4.3.5 Cohesion of particles

The filaments may display some cohesion behavior, this is especially true regarding the
sized tow specimens. Cohesion will prevent spread of the filaments, as it tries to hold the
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Figure 4.23: Spread of the tow as a function of the height h, z
c

= 96.2 mm. The
polydisperse model is plotted along with its equivalent bidisperse model. The simple
model is presented for comparison. The ’bidisperse 2’ system has a radius ratio of R

s

=0.9

tow together. This can be represented by adding a cohesion term to the force exerted on
a particle:

�!
F

i

=
�!
F b

i

+
�!
F c

ij

��!
F cohesion

ij

. (4.21)

The cohesion force is defined as
�!
F cohesion

ij

= (F
a

s)�!n , where F
a

is the average force
per contact of some particles at the bottom center of the setup and s is cohesion factor.
In order to obtain F

a

, the average force per contact of the particles in the center are
considered. All contacts within distance of three particles from the core of the particle
packing are considered for F

a

. The cohesion force is only activated when the particles
come in contact, otherwise it is zero. Cohesion is zero at the beginning, since F

a

has not
been calculated yet. F

a

is calculated once every thousand time steps. This value is used
for the subsequent time steps until the next update of F

a

. This means that the cohesion
varies slightly throughout the simulation. It is also possible to define the cohesion relative
to a constant property, such as the tow tension, however, this is not done here.

The simulations were carried out for one geometrical setup while the cohesion factor
was changed. The cohesion factor was varied from s=0, without cohesion, to s=5, 5 times
the average contact force. The results are plotted in fig. 4.24. It can be seen from the
plot that the spread decreases linearly as the cohesion factor is increased. Ultimately at
very high cohesion, the tow will not spread taking the form of a circular unspread tow.
The cohesion model will only be applied when the sizing e↵ect is required and it will be
needed to find the suitable cohesion factor.

4.3.6 Surface friction

The spreading behavior of the tow may be influenced by friction. In this section a simple
friction model is added to the system where friction is only applied between the particles
and the surface. When a particle comes into contact with the surface, a normal reaction
force F

r

is applied from the surface to the particle. A constant coe�cient of friction, µ, is

43



Discrete Element Method

Figure 4.24: Spread of the tow as a function of the cohesion factor s (eq. (4.21)), z
c

= 96.2
mm, and height h=20 mm.

used to calculate friction, regardless of kinetic or static friction. Friction can either bring
a moving particle to a stop or reduce its velocity, or prevent it from moving, based on the
velocity and lateral force on the particle.

A friction coe�cient of µ=0.1 was used. First, the virtual damping coe�cient and
height were set to b=0.5 kg/s and h=3 mm to bring the particles to rest on the surface.
Then b was set to zero to minimize the virtual damping e↵ect and h was increased for
the purpose of simulation. The result of the friction model is shown in fig. 4.25 and
compared to the simple model. It can be seen that applying the surface friction reduces
the spreading behavior up to h=30 mm and prevents further spread when h is increased.

Figure 4.25: The spread of the tow as a function of height h for the simple and friction
model.

The simple friction model cannot correctly model the friction. It could be that if a
more comprehensive friction model, which allows rotation and rolling of the particles, is
used, better results would be achieved. However, a more complicated friction model will
not be discussed in this study.
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4.3.7 Model feature summary

In the previous sections the DEM method was introduced and implemented. After iden-
tifying the relevant forces, they were translated to the model. First, a simplified model
was presented and in the next steps other features were added to the model and their
e↵ects were observed and discussed briefly. Not all of the features will be used in the
final model. The experimental results (section 3.3) should be used to determine which
features are relevant and which are not. For instance it was determined that twist will
be prevented as much as possible. Upon visual inspection of the tow it was determined
that the twist was less than 0.6 twists per meter, hence this will be applied to the final
model to account for existing twist, which also requires applying the actual boundary
model. According to fig. 4.22, this amount of twist will influence the spread less than
1 percent. An important outcome of the experiments was that the spread was strain
dependent, therefore strain dependency will be applied to the final model, both low and
high sti↵ness system properties will be used and compared. As for polydispersity, the
actual polydispersity of the tow will be used, although it was observed that the e↵ect of
polydispersity is minimal at such a narrow distribution. On the other hand cohesion will
be used but only for experimental results regarding sized tow specimens. The cohesion
factor will be chosen in a way to represent the sizing e↵ect and fit with the experimental
results. It was determined that a cohesion factor of s=4 (section 4.3.5) gives satisfactory
results. Surface friction is not applied to the model, since it does not give correct results.
This may be due to the fact that the simple friction model is ine�cient, and the particles
should be allowed to roll on the surface as well as slide.

In the results section this final model is used and simulations which correspond with
actual experiments are carried out. The geometrical variations presented in section 3.2.2
will be used. Since the model is only intended to predict the spreading behavior of one
cross section, a spreader bar radius of R=3 mm will be used to minimize the contact
surface. The simulations are carried out using the parameters in table 4.3. The amount
of twist, twist per meter, is equal for both z

c

=35 mm and z
c

=96.2 mm but since the
length of the tow is di↵erent for these two conditions the amount of twist at the clamps
di↵er.

Table 4.3: Summary of the parameter variation
Variation z

c

(mm) h (mm) clamp twist Remarks

Geometry
35 5,10,20,30 7.6�

96.2 5,10,20,30 20�

Cohesion 96.2 5,10,20,30 20� Cohesion factor s=4

4.4 Continuum fields

Granular materials are discrete elements. A bucket filled with stone can be considered a
granular medium. If a random point is chosen, there may or may not be material in that
point. If there is no material, the mass, stress, strain is zero at that point. In order to
observe stress in granular materials, experiments can be carried out using photo-elastic
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materials to characterize the stress on the disks using photoelasticity [48]. Therefore,
stress in a granular material is not distributed uniformly but is conducted along so-called
force chains which are networks of grains resting on one another. Looking at the discrete
grain, one can define microscopic properties which are local properties which vary greatly
from one point to the next.

This is also true for any other solid, liquid or gaseous material, since all materials
are consisted of discrete elements, molecules and atoms. If done correctly, any material
can be modeled using discrete elements. For continuous materials this can be done using
molecular dynamics. On the other hand, macroscopic properties are properties which
do not exhibit very large gradients in neighboring points and are continuous, such as
volume fraction, mass density, stress, strain, etc. E↵orts to connect molecular dynamics
with macroscopic quantities dates back to studies carried out by Boltzmann. The Kinetic
theory of gases explains macroscopic properties of gases, such as pressure, temperature,
or volume, by considering their molecular composition and motion.

Macroscopic continuum equations for the description of the behavior of granular media
rely on constitutive equations for stress, strain, and other physical quantities describing
the state of the system. One possible way of obtaining an observable like the stress is
to perform discrete particle simulations and to average over the microscopic quantities in
the simulation, in order to obtain an averaged macroscopic quantity. In order to obtain
macroscopic properties two methods are available, the cell averaging method and the
coarse graining method. These methods and their formulations are explained extensively
in [36, 49]. A short summary of the continuum fields using the cell averaging method is
presented below. The particle area is binned using the Voronoi tessellation, in which each
particle is inside one cell. For further details refer to the articles.

In this model the particles are cylindrical with height h
p

= 2R sin �. The total contact
force is applied on the cylinders, therefore, the contact force is first divided by the height
h
p

and the calculations are carried out for the 2-dimension plane using the force per unit
length f c

ij

= F c

ij

/h
p

. This will also correct the units for calculation of pressure and stress.
The first continuum field is the volume fraction, which is defined as the ratio of the

area of the particle A
p

, to the area of the Voronoi cell of that particle A
tot

:

⌫ =
A

p

A
tot

(4.22)

The second quantity is the stress � in the original coordinate system and from that,
the stress components �

xx

, �
yy

and ⌧
xy

are extracted. For the Voronoi approach, the stress
tensor for cell i corresponding to particle i is obtained using:

�
i

=
1

A
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⌃f c

ij

⌦ lpc (4.23)

where the sum is over all contacts on particle i, lpc is the branch vector going from the
center of the particle to the contact point and ⌦ is the dyadic product.

The principal stresses are obtained from the following req:
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The pressure is simply P = (�
1

+ �
2

)/2 and the deviatoric stresses are, s
xx

= �
xx

� P
and s

yy

= �
yy

� P . Knowledge of the stresses allows the determination of the orientation
of the principal planes.

In the following the Voronoi method is applied to the simulation results of the final
model, where z

c

=96.2 mm and h=5 mm. Also note that there are less than 500 parti-
cles in the following Voronoi tessellation plots. This is due to the fact that the Voronoi
tessellation is not bounded correctly for the outer particles, therefore they are not dis-
played. The lower particles in contact with the boundary were bounded by mirroring
those particles relative to the boundary.

4.5 Continuum field results

The continuum fields were obtained for monodisperse and bidisperse system using the
Voronoi cell method. Some of the fields are also presented using the coarse graining
method for comparison. The continuum results and plots were verified by dividing the
total normal force component of the tow by the contact surface and comparing this value
to the �

yy

; it was confirmed that the plots are correct. The continuum quantities are
obtained for the monodisperse and the equivalent bidisperse systems of table 4.2. The
convention for the stress tensors is that negative is compressive stress and pressure is
plotted as positive, i.e. �P is presented.

The volume fraction of the particle packing is shown in fig. 4.26 and fig. 4.27 for the
monodisperse and bidisperse systems, respectively. For the monodisperse system, the
volume fraction is nearly similar for all particles except for the particles in contact with
the boundary, which is due to the fact that their cells have a higher A

tot

. The volume
fraction of the bidisperse system seems somewhat di↵erent. Neglecting the boundary
particles and considering the scale of the color bar apparently the variation is not very
large, but even though the structure can still be considered ordered. The few cells on
the top which do not have a regular hexagonal form are due to the Voronoi tessellation
procedure and are ignored. The coarse grained volume fraction is shown in fig. 4.28. It
can be seen that the local variations are smeared out compared to the Voronoi method
and that it is an ordered packing. It should also be noted that the volume fraction ⌫ ⇠=0.91
is the close packed hexagonal ratio for circles in 2-dimensions.

The stress component �
xx

is shown in fig. 4.29 and fig. 4.30 for the monodisperse and
bidisperse systems, respectively. The stress gradually increases from a minimum, from
the sides, to a maximum to the core of the particle packing, note that also here the
boundary particles at the bottom display less stress due to larger A

tot

. This stress trend
is also observed for the bidisperse system, however, the polydispersity has introduced
inhomogeneity in stress distribution, resulting in some particles with much larger stress
and some with less stress. There seems to be a sequence of connected particles which have
a high stress. The stress �

xx

is also plotted for the bidisperse system using the coarse
graining method in fig. 4.31 (note the convention of stress is reversed). This method gives
similar results compared to the Voronoi method, only with smoother gradients.

The stress component �
yy

is shown in fig. 4.32 and fig. 4.33 for the monodisperse and
bidisperse systems, respectively. The general trend here is that �

yy

increases from the
top to the bottom and is higher where more particles are stacked above each other. The
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polydispersity also introduces a lot of inhomogeneity in �
yy

, similar to �
xx

plot.
The pressure plot for the monodisperse and bidisperse systems is presented in fig. 4.34

and fig. 4.35, respectively. The pressure is minimum at the boundary and increases to
the maximum at the core. Again, the polydispersity has caused some particles to be
under more pressure compared to their neighbors. The shear stress ⌧

xy

is shown for the
monodisperse and bidisperse systems in fig. 4.36 and fig. 4.37, respectively. There is very
little shear stress for the monodisperse system compared to the bidisperse system. The
shear stress shows the tendency of the particles to roll or slip over each other. This may
explain the extra spread width w for bidisperse systems due to high shearing stresses.

The deviatoric stresses s
xx

and s
yy

are shown in fig. 4.38, fig. 4.40, fig. 4.39 and fig. 4.41
for the mono and bidisperse systems. Other than the usual inhomogeneity for the bidis-
perse system and the general trend of a maximum stress at the core, the interesting point
is that s

xx

is generally positive and s
yy

is negative. This shows the higher contribution to
pressure from �

yy

.
Next, the principal stresses, �

1

and �
2

, are plotted in their orientation for all particles
at the particle center, in fig. 4.42 and fig. 4.43 for the mono- and bidisperse systems,
respectively. From fig. 4.42, it can be seen that the principal stress are in the original
coordinate for the monodisperse system. However, the principal stress plot and orienta-
tions of the bidisperse system shows that not only the stress and pressure magnitude is
di↵erent but the principal directions also vary significantly. The principal stresses have
been normalized using the particle pressure and shown in fig. 4.44 and fig. 4.45 for the
two systems. The particles with small principal stresses at the boundary are better visible
here.

One important conclusion is that such a small and narrow polydispersity with an
ordered structure causes such large variations in pressure and stress distributions. Such
large variations can cause premature failure of filaments and components. Many types of
tow materials fail under compressive pressure. Another important conclusion is that DEM
provides the possibility of taking into account such inhomogeneous distributions which is
not possible in continuum mechanics. When continuum methods are used to obtain fields
such as tow stress and pressure, these variations and realistic issues cannot be identified.
DEM takes the random and developing structure into account. A small dispersity in
the particle size greatly a↵ected the pressure and orientation of principal stresses in the
structure and caused large stress inhomogeneity. The amount of stress inhomogeneity
would increase as the size di↵erence increases or the sti↵ness of the particles increase.
This is due to the fact that as the size di↵erence and sti↵ness are reduced the particles
can overlap and distribute the pressure on more particles. Defining a parameter such as
(a

2

� a
1

).(k) can provide insight on the e↵ect of particle size and sti↵ness.
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Figure 4.26: Volume fraction of the monodisperse system using Voronoi diagram.

Figure 4.27: Volume fraction of the bidisperse system using Voronoi diagram.

Figure 4.28: Volume fraction of the bidisperse system using coarse graining.
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Figure 4.29: �
xx

plot of the monodisperse system using Voronoi diagram. The units are
in MPa.

Figure 4.30: �
xx

plot of the bidisperse system using Voronoi diagram. The units are in
MPa.

Figure 4.31: �
xx

plot of the bidisperse system using the coarse grained system. The units
are in MPa and the convention is that positive stress is compressive.

Figure 4.32: �
yy

plot of the mono system using Voronoi diagram. The units are in MPa.

Figure 4.33: �
yy

plot of the bidisperse system using Voronoi diagram. The units are in
MPa.
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Figure 4.34: Pressure plot of the monodisperse system using Voronoi diagram. The units
are in MPa.

Figure 4.35: Pressure plot of the bidisperse system using Voronoi diagram.

Figure 4.36: �
xy

plot of the mono system using Voronoi diagram. The units are in MPa.

Figure 4.37: �
xy

plot of the bidisperse system using Voronoi diagram. The units are in
MPa.
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Figure 4.38: deviatoric stress plot of monodisperse system s
xx

using Voronoi diagram.

Figure 4.39: deviatoric stress plot of bidisperse system s
xx

using Voronoi diagram. The
units are in MPa.

Figure 4.40: deviatoric stress plot of monodisperse system s
yy

using Voronoi diagram.
The units are in MPa.

Figure 4.41: deviatoric stress plot of bidisperse system s
yy

using Voronoi diagram. The
units are in MPa.
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Figure 4.42: The principal stresses plotted at the particle location with their direction for
the monodisperse system. The red scale line represents 1 MPa.

Figure 4.43: The principal stresses plotted at the particle location with their direction for
the bidisperse system. The red scale line represents 1 MPa.

Figure 4.44: The normalized principal stresses plotted at the particle location with their
direction for the monodisperse system. The stresses have been normalized with the pres-
sure at those points. The red scale line represents 3 Mpa/Mpa.

Figure 4.45: The normalized principal stresses plotted at the particle location with their
direction for the bidisperse system. The stresses have been normalized with the pressure
at those points. The red scale line represents 3 Mpa/Mpa.
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4.6 Results

The results for the geometrical variations and application of cohesion are shown in fig. 4.46.
For each geometry two systems with high and low sti↵ness are simulated (for the high
sti↵ness and low sti↵ness systems refer to section 4.3.1). These results will be used for
comparison with the experiments.

Figure 4.46: Spread as a function of height h for di↵erent geometries and with cohesion.
For di↵erent geometries high and low sti↵ness parameters were used (section 4.3.1) and
for the cohesion model only high sti↵ness

4.6.1 Geometrical variation

The simulation was conducted for z
c

=35 mm and z
c

=96.2 mm. As discussed in sec-
tion 4.3.1, the strain dependence of tension will cause a higher spread, compared to
constant tension throughout all filaments. However, it is observed from fig. 4.46 that the
spread also increases as z

c

is reduced. This is due to the fact that as z
c

is reduced, the
strain gradient increases between the particles and particles which have a higher height
h
i

carry more of the tension. As they move down, causing the structure to spread, their
tensions reduce.

4.6.2 Cohesion

In order to be able to correctly model the sizing e↵ect, first the correct cohesion factor
has to be obtained. An iteration for di↵erent cohesion factors for the simple model was
presented in section 4.3.5. A suitable fit with the experimental results was obtained when
a cohesion factor of s=4 was used. As expected the cohesion reduces the final spread
(fig. 4.46).

54



4.7 Summary

In this chapter, the DEM method was thoroughly introduced and the relevant parameters
were explained. A simple model for the spreading behavior was presented. Several features
were added to the simple model and the results and influence of each feature was discussed,
then it was determined which features will be kept for the final model.

The extraction of continuum quantities from discrete assemblies was briefly introduced
and several continuous quantities were calculated for the final model, and the obtained
continuum fields were discussed. A very important conclusion of this section was that
when polydisperse particles are used, as is in reality, the stress and pressure distribution
become inhomogeneous, contrary to continuum models.

Finally, the spread results were plotted for the final model for di↵erent geometrical
and material parameters (sizing). In the next chapter, this model and its results will be
used for comparison with the experimental results obtained in chapter 3.
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Chapter 5

Discussion

The experimental approach and its results were presented in chapter 3 and the possible
spreading mechanisms and important factors in spreading were discussed. Chapter 4 was
dedicated to the Discrete Element Method (DEM). After introducing DEM, a simplified
model was devised which represented the spreading experiments. Several features were
added to the simplified model and a final model with all of the relevant features was
implemented. In this chapter, first the experiment, model and literature (Wilson’s pre-
diction [27]) results will be presented together and compared in section 5.1. After drawing
the final conclusions in section 5.2, some recommendations are given for future research
on this subject in section 5.3.

5.1 Comparison of model, experiments and literature

The model, experiments and literature are compared for three di↵erent conditions. For
the first two conditions, geometrical variations are taken into account and the results of
the three di↵erent approaches are presented. The experiments for these variations were
carried out for desized tow specimens and the error bars represent the standard deviation
of the experiments. The simulations were carried out for low and high sti↵ness conditions
(For more details on the two models refer to section 4.3.1).

The results for the clamp to center distance z
c

=96.2 mm are presented in fig. 5.1. The
low sti↵ness model is within 4 percent and the high sti↵ness model is within 7 percent
of the measurements. Both models predict the tow spread to good accuracy, but they
both exceed the experiments by a small amount. This could arise from the fact that
the radius of the spreader bar in the experiments was not small enough. Wilson’s model
overshoots the experimental results by approximately 25 percent. As observed in fig. 3.12
(section 3.3.1), the spread increases when the spreader bar radius is reduced. It could be
that if the size of the spreader bar is reduced, the experimental results would increase to
obtain a better fit with the model. This could be attributed to the fact that since only
one cross section is modeled, when the bar radius increases, the contact length of the tow
and consequently the load distribution change and the model will not be valid. Another
possibility is that if comprehensive friction is added to the model, the model results would
decrease.

When the clamp to center distance is reduced to z
c

=35 mm, the model results and
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Wilson’s prediction are all within 10 percent range of the measurements. Due to increase
in tension gradient between the filaments, the spread increases both in the model and
the experiments. If strain dependency is not included, the model would act similar to
Wilson’s prediction, and become independent of z

c

. This is a very serious flaw in Wilson’s
model. It is also observed that the measurement results are between the high sti↵ness
and low sti↵ness models. The di↵erence between these two models was taking the free
hanging length of the tow into account or neglecting the e↵ect from the hanging length.
This could mean that the actual sti↵ness is somewhere between these two models.

The results for the experiments with the sized material is shown in fig. 5.3 along with
the high sti↵ness model with cohesion and Wilson’s prediction. Since Wilson does not
include material parameters it gives the same results as the two previous plots. For the
model, a cohesion factor of s=4 was used to simulate the existence of sizing. Although
the model results are within the range of the measurements, the slope is smaller for the
model. At small h, the predicted spread is higher than the measurements, and at higher
h the predicted spread is lower. The smaller slope of the model can be related to the
definition of the cohesion. Since the cohesion force is related to the contact forces at the
core of the packing, at higher h the contact force increases, resulting in a larger cohesion
force calculation.

5.2 Conclusions

The first conclusion is that the DEM model was able to predict tow spreading accurately,
since it gave correct results for two di↵erent geometrical setups, crossing out the possibility
of a random correct fit. The cohesion factor had to be iterated in order to fit the sized
material experiments, but yielded accurate results for di↵erent heights h. The DEM
model is also suitable from the aspect that it can be further developed to include friction
and other features.

Wilson’s model did not take into account several parameters, including the significant
e↵ects of strain dependence of filament tension and sizing on tow spread. Although Wilson
can give a quick indication of the approximate tow spread, it cannot give an accurate one.
This is due to the fact that important parameters such as the material properties and
tension di↵erence between the filaments are not taken into account.
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Figure 5.1: Model (high sti↵ness and low sti↵ness), experiment and literature results
plotted as a function of height h, z

c

=96.2 mm without sizing.

Figure 5.2: Model (high sti↵ness and low sti↵ness), experiment and literature results
plotted as a function of height h, z

c

=35 mm, without sizing.

59



Discussion

Figure 5.3: Model (high sti↵ness), experiment and literature results plotted as a function
of height h for the system with sizing (experiments) or cohesion (model), s=4, z

c

=96.2
mm.

5.3 Recommendations for future studies

A discrete element model was presented in this study to predict the spreading behavior
of tows. The spreading behavior is one of several tow deformation mechanisms, such
as bending and twisting. It was found that the model is able to predict the spreading
behavior of a tow cross section well within 10 percent of the experiments. The added
value of this model was that it was able to take into account important aspects of the
experiments which greatly influence the spread of the tow.

Adding a comprehensive friction model is the next step to obtain a more realistic
prediction of the tow spreading behavior. It should be determined if such a friction model
would solve the issues of the simple friction model. Studying the surface e↵ects of the
spreader bar is another interesting possibility. Carrying out experiments with di↵erent
types of metals, ceramics and plastics with di↵erent roughness could yield interesting
results. It has been shown that when a very smooth spreader bar is used, adhesion also
plays a role in the deformation and spread of the tow [50]. Surface adhesion can be easily
implemented in the model. Also the e↵ect of surface features such as roughness and other
geometrical aspects can be included in the future.

It is expected that if the model is generalized and implemented in three dimensions
it should be able to predict the deformation of tows. But preliminary to that, a more
e�cient contact algorithm should be implemented. When this is done, a single filament
can be modeled with cylindrical elements which are attached together. A tow can be
modeled with a few hundred of these chain elements. With an e�cient algorithm, static
problems can be carried out with very low computational expense. If this is done correctly,
the model should be able to catch the e↵ect of the spreader bar size. This model can
be used to predict tow behavior in many production processes, such as braiding, weaving
and filament winding. The chain elements can be given bending and torsional sti↵ness
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to open up the possibility of modeling other deformation mechanisms. It could be useful
in the better understanding of locking during shearing of fabric materials. It will also be
possible to calculate the permeability of the structure and model resin impregnation in
the tow using FEM.

By analyzing the stress components and pressure in the filaments and throughout the
tow structure, it is possible to obtain other failure criteria, which are not available when
the tow is modeled as a continuum. This opens up many possibilities in the analysis of
various production processes, where tow and filament pressure have significant impact on
the process.
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[39] H. B. Mühlhaus and I. Vardoulakis, “The thickness of shear bands in granular ma-
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S. Luding, eds.), Lecture Notes in Physics 564, pp. 389–409, Berlin: Springer, 2000.

[48] D. W. Howell, R. P. Behringer, and C. T. Veje, “Fluctuations in granular media,”
Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 9, no. 3, pp. 559–572,
1999.

[49] I. Goldhirsch, “Stress, stress asymmetry and couple stress: from discrete particles to
continuous fields,” Granular Matter, vol. 12, pp. 239–252, 2010.

65



BIBLIOGRAPHY

[50] B. Cornelissen, B. Rietman, M. de Rooij, and R. Akkerman, “Tow mechanics: A con-
tact mechanics approach of friction in fibrous tows during forming,” Key Engineering

Materials, vol. Volumes 504 - 506, pp. 325–330.

66



Appendix A

An optical microscope was used to measure the tow spread at the center spreading bar.
The microscope was calibrated with a 20 mm glass plate with divisions of 0.1 mm (fig. A.1).
The length per pixel for each zoom was determined using MATLAB and was recorded
for later use. The results of the measurements and calculations is shown in table A.1
for di↵erent magnifications. For instance for the 4x zoom the length per pixel is 0.00083
mm, which is a very high accuracy. In this case, the required accuracy for measuring the
spread is 0.01 mm, which leaves space for an error of more than 10 pixels.

Figure A.1: Glass scale used for calibration and measurement under the microscope using
4x, the distance between the major tick marks is 1.0 mm.

Table A.1: Symbols of particle properties with descriptions
Magnification Measured length (mm) Number of pixels Length (mm) per pixel
0.65 20 3848 0.00520
0.8 17.3 4255 0.00407
1 14 4240 0.00330
1.25 11.3 4283 0.00264
1.6 8.8 4260 0.00207
2 7 4228 0.00166
2.5 5.5 4175 0.00132
3.2 4.3 4155 0.00103
4 3.4 4101 0.00083
4.5 2.8 4235 0.00066
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