
 
The 7th International Conference on Discrete Element Methods 

August 1 to August 4, 2016   Dalian, China 
Paper Number: G010111 

 
From particles in steady state shear bands via 

micro-macro to macroscopic rheology laws 

S. Luding, A. Singh, S. Roy, D. Vescovi, T. Weinhart, and V. Magnanimo  
MSM, Engng. Technology, MESA+, University of Twente, Enschede, NL 

Abstract. Particulate systems and granular matter are discrete systems made of 
many particles; they display interesting dynamic or static, fluid- or solid-like 
states, respectively – or both together. The challenge of bridging the gap between 
the particulate, microscopic picture towards their continuum description (via the 
so-called micro-macro transition) is one of today’s challenges of modern research. 
This short paper gives a brief overview of recent progress and some new insights 
about local granular flow rules for soft particles. 
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1 Introduction 

Particulate systems pose many challenges for academia and industry. From mo-
lecular dynamics simulations of many atoms or particles, one can extract scalar 
fields like density or temperature, as well as vectorial fields like velocity, or ten-
sors like stress, strain-rate, and structure (fabric). Given sufficiently good statistics 
the data can have a quality that allows to derive constitutive relations that describe 
the local rheology and flow behavior [1-6] of fluids (e.g. atoms confined in a 
nano-scale channel [4]) or granular systems, which are non-Newtonian, with par-
ticular relaxation behavior, anisotropy etc. [1-3,5,6]. With attractive forces in-
volved, like van-der Waals forces or liquid-bridges, this leads to cohesion added 
on top of the already non-trivial dynamics of granular matter [2,6-8]. Dependent 
on the energy input (e.g. through an applied  shear-rate), the particles can flow like 
a fluid, jam or un-jam, or be solid with interesting anisotropic structure (contact-
and force-networks) [9,10].  
 The goal of the present paper is to use the micro-macro transition pro-
posed by Isaac Goldhirsch [11,12] to determine three-dimensional local rheology 
laws that go beyond the μ(I)-rheology [13], which predicts well the flow behav-
iour of rigid particles, where only the inertial number is relevant. However, for re-
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the system,where a part of the bottom and the outer cylinder rotate at the same rate. The system isfilledwith
≈ ×N 3.7 104 polydispersed spherical particles with density ρ = =− −2000 kgm 2 gcmp

3 3 up to heightH.

The average size of particles is 〈 〉 =a 1.1mm, and thewidth of the homogeneous size-distribution (with
=a a 1 2min max ) is − = − 〈 〉 〈 〉 =a a1 1 0.03572 2 . The cylindrical walls and the bottom are roughened by

attaching some (about 3%of the total number) attached/glued particles [41, 43, 44].
When there is relativemotion between inner and outer cylinders, a shear band initiates at the bottom from

the split positionRs and propagates upwards and inwards, remaining far away from the cylindrical walls inmost
cases [40, 42]. The qualitative behavior is governed by the ratio H Rs and three regimes can be observed as
reported in [40, 42].We choose ⋍H 0.034 m (for = −g 10 ms 2 and = −k 100 Nmn

1 )1, such that azimuthal
velocity profiles always have the error function shape. The shear band always reaches the free top surface and
stays away from thewalls, as reported in [40].With increasing filling height (data reported in [45]), the shear
band at the top surface gets wider andmoves inwards, before stronger deviations from the error function are
observed [42].However, for none of our simulationswe observed instabilities as recently reported byMoosave
et al [46]. Our simulations indicate (data not shown) that thewidth decreases and the positionmoves less
inwardswith increasing kn and g.

To study the bulk behavior in a broad pressure range, gravity is varied in the range ⩽ ⩽− −g0.5 ms 50 ms2 2.
The details regarding rotation rate of the system are reported in table 1. The total simulation time is chosen such
that the cylinder completes half a rotation in that time.

Figure 1.A sketch of our numerical setup consisting of a fixed inner part (light blue shade) and a rotating outer part (white). Thewhite
part of the base and the outer cylinder rotate with the same angular velocity,Ω, around the symmetry axis (dot-dashed line). The
inner, split, and outer radii are given by = 〈 〉R a8i , = 〈 〉R a80s , and = 〈 〉R a100o , respectively, where each radius ismeasured from
the symmetry axis. The gravity, g, points downwards as shown by an arrow.

Table 1.Table showing the values of Ω
π2
(units of s−1), g (units ofms−2) and particle stiffness kn (units ofNm

−1) used in our
simulations, and various time scales associatedwith the system (in units of s ), as discussed in themain text. The values of γT ˙
andTp are the average values reported at = 〈 〉 − 〈 〉z d H H d2 , 2, 2 in the center of the shear band.

g
Ω
π2 kn × −T ( 10 )c

3 ×η −T ( 10 )2 × −T ( 10 )g
2

γT˙ × −T ( 10 )p
3

0.5 0.005 100 2 5.6 6.6 25, 20, 10 1.7, 2.5, 5
1 0.01 100 2 5.6 4.7 10.9, 7.8, 2.7 12.5, 15.3, 32
2 0.01 100 2 5.6 3.3 10.7, 7.5, 2.7 9, 11, 22
5 0.01 100 2 5.6 2.1 10.3, 7.4, 2.6 5.9, 7, 14.6
5 0.01 500 0.1 2.5 2.1 10.6, 7.5, 2.1 5.1, 7, 14.1
20 0.01 100 2 5.6 1.05 9.7, 7.0, 2.6 2.9, 3.8, 8
20 0.01 400 10 11.2 1.05 10, 7.1, 2.7 2.9, 3.6, 7.4
50 0.01 100 2 5.6 0.66 8.7, 6.6, 2.5 1.8, 2.2, 4
50 0.01 1000 0.66 18 0.66 10.1, 7.1, 2.6 1.9, 2.5, 7
10 0.01 100 2 5.6 1.5 9.9, 7.0, 2.6 4, 5.6, 24
10 0.01 1000 0.66 18 1.5 9.1, 8.1, 2.6 4, 5.6, 27
10 0.01 10000 0.2 0.56 1.5 10.7, 7.3, 2.8 4, 5.4, 31
10 0.1 100 2 5.6 1.5 1.1, 0.7, 0.23 4, 6, 9
10 0.5 100 2 5.6 1.5 0.2, 0.15, 0.05 4, 5, 10
10 1.0 100 2 5.6 1.5 0.1, 0.07, 0.02 4, 5, 20
10 2.0 100 2 5.6 1.5 0.02 0.03, 0.008 4, 6, 18

1
The height varies slightly with gravity and particle softness.
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al particles also the confining stress (softness) has to be taken into account as con-
trol parameter, as presented below. Additionally relevant parameters are not dis-
cussed in this study, namely cohesiveness and granular temperature or fluidity. 

2 Phenomenology 

In granular systems, the interplay between strain, stress and anisotropy can lead to 
dilatancy that is only one of the interesting micro-mechanical mechanisms related 
to the ‘memory’ of the packing. Starting from a dense packing, shear motion is on-
ly possible if the grains “unlock” from their dense arrangement. Shearing for long 
time, the initial state is forgotten and a steady state (sometimes referred to as criti-
cal state) is reached. The evolution of the steady state anisotropy (micro-structure) 
is independent from the direction-dependency (“anisotropy”) of stress, both in 
rates as well as in principal directions, i.e., tensorial eigen-system orientations [3-
5]. In steady state, a certain proportionality and relative orientation establishes, 
which is subject of ongoing research. Thus, particulate systems behave in various 
ways like a non-Newtonian fluid [3,4], as observed by modern particle simula-
tions, from which all the macroscopic scalar, vectorial, and tensorial fields can be 
obtained [3-7]. The micro-macro transition translates the information about parti-
cle positions, velocities and forces into the continuum fields density, displacement 
(gradient) structure, and stress, using smoothing and time-averaging (in stready 
state). In a particular geometry, i.e., the split bottom ring shear cell, see Fig. 1, the 
fields are functions of the height and the radial distance from the symmetry axis, 
so that a wide range of local densities, strain-rates and pressures are covered. Hav-
ing available this information from the micro-macro transition, the next step is to 
formulate general, local constitutive relations that allow to predict the systems 
flow behaviour in inhomogeneous systems [5,7-9]. Similar methods and ap-
proaches can also be applied to solid-like systems [10] – all are based on the orig-
inal ideas of coarse-graining from micro-to-macro [11,12], following the ideas of 
Isaac Goldhirsch [3,11,12]. Macroscopic data can be obtained as functions of par-
ticle- and contact-properties like particle sizes, stiffness, friction as well as system 
parameters like the external shear-rate. 

 
 
 
 
 
 
 
 

 
Fig. 1 Schematic plot of the ring-shear cell with the relevant geometry parameters. 



 3 

 Examples of the most basic element tests, i.e., small and representative 
systems with relevance for the micro-macro approach, involve homogeneous sys-
tems like the tri-axial box with pure-shear deformations [9,10], and planar flows 
with a mix of simple- and pure-shear [4]. Examples for inhomogeneous systems 
are simple-shear in avalanches on inclined planes [3], or the split-bottom ring-
shear cell [5-8]. One simulation of a homogeneous system allows for just one da-
ta-set, obtained with a good statistics due to global averaging. In inhomogeneous 
systems, on the other hand, by means of a suitable local and time averaging, a sin-
gle simulation allows for the collection of plenty of data-sets (including the parti-
cle density, displacement, velocity or velocity gradient, stress and fabric for the 
micro-structure).  

3 Results 

Here, a short summary of recent results on formulating the local granular rheology 
is presented and concluded with an outlook for future research. 
When formulating a granular rheology, the starting point is the successful, simple, 
and elegant so-called μ(I)-rheology [5,13], which relates the so-called macro-
scopic (bulk) friction, i.e., the shear-stress to pressure ratio μ  =τ/ p, in a sheared 
particulate system to the inertial number, i.e., the dimensionless strain-rate: 

 
   I = !! d0 p ' "   

 
with shear rate  !! , diameter d0 = 0.0022 m, mass-density ρ= 2000 kg/m3, and 
pressure p’. The relation that describes well a wide variety of flows [13] of hard, 
cohesionless particles, at various strain rates is: 

   (1) 
 
where  µ0 = 0.15 and  µ! = 0.42  represent the zero and infinite strain rate limits, re-
spectively, and the characteristic dimensionless strain-rate is I0 = 0.06, where iner-
tia effects considerably kick in. Since the simulations presented below concern 
particle simulations with a very small coefficient of particle contact friction, μp = 
0.01, the dependence of the coefficients in Eq. (1) on friction is not considered.  
 The first correction to the μ(I)-rheology is relevant for soft particles, as 
based on the results by Singh et al. [5]; it was originally given as linear additive 
term to the above rheology for small strain-rates [5], however, it can also be re-
phrased as multiplicative correction factor: 

Figure 4: Stress-anisotropy, or objective macroscopic friction, sD = σD/p, plotted against

pressure p, with different symbols for different strain-rates, as given in the inset.

with the mean particle diameter d0, and the bulk density, �, as proposed in Ref. (?), neither leads

to a better trend nor a better data collapse for either of the two possibilities.

The µ(I,p)-rheology

The macroscopic friction and the objective macroscopic friction both follow the so-called µ(I)-
rheology:

µ(I) = µ0 + (µ∞ − µ0)
1

1 + I0/I
, (6)

with a certain analytical relation, as given by (?). The parameters that describe our data are

µ0 = 0.15, µ∞ = 0.42, and I0 = 0.06, similar to those given by (?). The parameters provide the

quasi-static and rapid-shear limits, as well as the transition in terms of the inertial number I .

However, this law needs a generalization that includes the pressure dependence

µ(I,p) = µ(I)



1−
�
p∗

p∗0

�1/2


 , (7)

as proposed by (?), with p∗0/µ(I)
2 = 40, denoting the dimensionless pressure, p∗ = p�d�/k, at

which the effect of softness of the particles becomes dominant. For small I , using µ(I → 0) = µ0,

this translates to p∗0 = 0.9 ≈ 1 as dimensionless transition pressure, at which the correction factor

in Eq. (7) becomes unphysical; however, such large pressures correspond to enormous overlaps

of 100% and are not considered in most DEM simulations anyway. Note that the correction term

represents the square of the ratio of the strain- and the softness time-scales, so that the power

1/2 makes the correction linear in the ratio of time-scales, for more details see (?).

Furthermore, due to pressure and rapid shear, the density

φ(I,p) = φc +
p

pφ
− I

Iφ
(8)

respectively increases or decreases, with pφ = 0.48, Iφ = 1.2, and the critical volume frac-

tion φc = 0.65, see Refs. (?; ?). This constitutive relation can be also rephrased in terms of

multiplicative correction factors

φ(I,p) = φc

�

1 +
p

pcφ

��

1− I

Icφ

�

, (9)

with pcφ = pφφc = 0.31 and Icφ = Iφφc = 0.78, which is almost identical to the previous form,

except for very large p and I , which is outside the range of considered parameters.

The dependence of φ, and especially φc on contact parameters like the particle friction or

cohesion, and on the granular temperature, is not considered here, for the sake of brevity.



4   

 µ I, p( ) = µ I( ) 1! p
p0

"
#$

%
&'

1/2"

#
$

%

&
'

  (2) 

 
with the dimensionless pressure p = p’ d0 / k, the characteristic pressure at which 
this correction becomes considerable, p0 = 0.9, and the stiffness k = 100 N/m. This 
correction accounts for a range of particle stiffness (or softness), but also for dif-
ferent magnitudes of gravity, as in a centrifuge or on the moon. This approach al-
lows describing granular flows using a local approach, in opposition to non-local 
models, saving the beautiful simplicity of locality and extending the basic model 
by including neglected features. Additional corrections for cohesive particles in-
volve the so-called Bond-number (Bo), as studied elsewhere [6,7] and ignored in 
the following.  
Both dimensionless numbers can be expressed as a ratio of time-scales, namely 

  
I = t !! tp

 and p = t p tc( )2 , where the subscripts denote strain-rate, pressure and 

contact duration, respectively. 
In order to complete the rheology for soft, compressible particles, a relation for the 
density as function of pressure and shear rate is missing: 

 ! I, p( ) = !c 1+
p
p!
c

!

"#
$

%&
1' I

I!
c

!

"#
$

%&
  (3) 

 
with the critical or steady state density under shear, in the limit of vanishing pres-
sure and inertial number, φc = 0.648, the strain rate for which dilation would turn 
to fluidization, I!c = 0.85 , and the typical pressure level for which softness leads to 

huge densities,  p!
c = 0.33  (double, due to the linear contact model). Note that both 

correction terms are valid only for sufficiently small arguments: Too large inertial 
numbers would fully fluidize the system so that the rheology should be that of a 
granular fluid, for which kinetic theory applies, while too large pressure would 
lead to enormous overlaps, for which the contact model and the particle simulation 
become questionable. In the following, the considered inertial numbers are I < 0.1, 
while the pressures are p < 0.01. 
 A small correction to the functional form of Eq. (3) removes the invalidi-
ty for large arguments, while remaining identical to first order Taylor expansion 
for small arguments: 

 

  
! I , p( ) = !c exp

p
p!

c

"

#
$

%

&
' exp ( I

I!
c

"

#
$

%

&
'   (4) 

 
 From a rapid and moderate external rotation frequency, f, of the split-
bottom ring shear cell, with split at Rs = 0.085 m, representative data from Ref. [5] 
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are plotted in Fig. 2 against the radial position. Higher confining stress corre-
sponds to a higher density, deeper below the free surface, while the density is re-
duced in the shear band, proportional to the local shear-rate, due to dilatancy. 
Overall the simulation data agree very well with the corrected density from the 
analytical Eq. (3), where only local information enters, besides some scatter and 
more systematic deviations in the tails of the shear band, away from the split, 
where the local strain rates are very small. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Density for rapid (top) and moderate (bottom) rotation frequency, plotted against the 
radial distance r, with data from particle simulations in Ref. [5], using the external rotation rates, 
f = Ω/2π, given above the panels, filtered at three different (approx.) pressure levels, p, as given 
in the inset (i.e. red, green and blue correspond to: close to the surface, in the middle, and closer 
to the bottom). The lines correspond to Eq. (3), with all parameter values given in the main text; 
the horizontal lines give the low stress and strain-rate limit, φc. The thin lines in the top-panel 
represent Eq. (3) while the thicker lines represent the improved form in Eq. (4). 

The macroscopic friction, i.e., the shear stress ratio, is plotted in Fig. 3, against 
the radial position for the same data-sets, in comparison with the classical rheolo-
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gy of Eq. (1) and the pressure-dependent rheology, Eq. (2). The pressure depend-
ence is improved when using the latter, especially in the tails, for the slower rota-
tion rate, where the classical rheology has no pressure dependence. Nevertheless, 
in the tails the stress ratio does not agree well with theory, indicating a missing 
additional correction term that accounts for a combination of very low strain-rate 
and finite granular temperature effects playing a dominating role in those regimes, 
see Ref. [5] for more details. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

 
 
 

 

Fig. 3 Shear stress ratio, μ, for the same simulations as in Fig. 2. The lines correspond to 
Eq. (1), the classical rheology (thin lines), or Eq. (2), the corrected soft rheology (thick lines), 
with parameters as given in the main text. The horizontal dotted lines give the constant low 
strain-rate limit, μ0. 
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Conclusions and Outlook 

In conclusion, particle simulations and the micro-macro transition can guide the 
development of new rheological particle-flow models that include and combine 
various mechanisms, which are quantified by dimensionless numbers. The original 
rheology for hard, cohesionless particles was generalized to include the effect of 
large confining stress and softness (or compressibility) of the particles. Both den-
sity and shear stress ratio are well predicted by the improved, pressure dependent 
rheology model, especially in the centre of the shear band. However, in the tails 
deviations still occur, which can be due to several reasons: (i) the statistics is 
much worse in areas where the strain rate is small, (ii) the system has not yet 
reached the true steady state – as reported in Ref. [14], (iii) there can be non-local 
effects as encompassed, e.g., by a “fluidity” variable, as used in Ref. [15-18], or 
there are additional local corrections needed, as proposed in Ref. [19] and reported 
as relevant for the present system in Ref. [5].  
 Ongoing research is aiming at finding such further corrections for very 
small strain rates, but also for cohesive particles. As next step the implementation 
of such multi-purpose, generalized flow/rheology models into continuum solvers 
is in progress. Final step is the development of fully tensorial flow models, as sug-
gested in Refs. [3,4], that are needed to account for all the non-Newtonian aspects 
of particulate and granular matter. 
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