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Abstract
In this work, we present theoretical results on granular gases of friction-less 3D rods with low dissipation. We
have identified a homogeneous cooling state for rods, where the time dependence of the system intensive variables
occurs only through a global granular temperature. We have found a homogeneous colling kinetics, which is in
excellent agreement with Haff’s law, when using an adequate rescaling time τ(d), depending on particle elongation d.
Similarly to a system of ellipsoids, energy equipartition holds for low dissipative systems of elongated rods. Taken
in advantages of scaling properties, we have numerically determined the general functionality of the magnitude Dc,
which describes the efficient of the energy interchange between rotational and translational degrees of freedom, as
well as its dependence with the particle shape. Moreover, we have found there is region for the particle elongation,
where the average energy transfer between the rotational and translational degrees of freedom is greater for rods than
for ellipsoids, with the same aspect ratio. Although the results presented here are focused on frictional-less rods, it is
important to remark that the implementation of rough rods is straightforward.
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1. INTRODUCTION

Granular materials are daily manipulated in many industrial process and everyday life. That’s why the description
of their kinetic and mechanical properties is a very active research field. These systems have been deeply analyzed
experimentally, analytically and numerically [1, 2], but the still produce relevant and unexpected results [1, 2].

Granular gases are very dilute systems of macroscopic grains, which move randomly loosing energy with constant
rate due to their inelastic collisions. Thus, in the absence of any external driving, their energy uniformly decreases
reaching a homogeneous cooling state (HCS). In that conditions, the time dependence of all its intensive variables
occurs only through the global granular temperature [3, 4]. For very dissipative systems, however, the HCS becomes
unstable and the system subsequently evolves into an inhomogeneous state where the cooling process notably slows
down [5, 6]. Consequently, the correlation between the particle’s motion determine the rate of energy lost and large
inhomogeneities in the density field are observed [5, 7].

There are also experimental evidences of materials with variable restitution coefficient that depends on the relative
velocity of the interacting particles. Moreover, a number of theoretical studies have carefully analyzed the particle-
particle interaction during the collision, explaining how inelasticity emerges from such interactions [8, 9, 10]. For
soft grains, in which the repulsion force depends linearly on deformation, a constant restitution coefficient can be
recovered [11, 12] and, consequently, a cooling kinetics according to Haff law should always be expected. Contrary,
assuming nonlinear elastic repulsive force (Hertzian contact) leads to a notably different algebraic decay of the system
energy during the HCS [9].

On the other hand, in granular gases the particle roughness leads to correlations between the translational and
rotational degrees of freedom [13, 14]. In general, both translational and rotational kinetic energies decrease with
the same rate but differ from each other due to the breakdown of energy equipartition. Years ago, these correlations
have been quantified for system of agitated rough spheres [15, 16]. More recently, simulations of 3D gases of rough
spheres have shed light on the nontrivial process or energy interchange between the translational and rotational degrees
of freedom, showing that the spin of a single grain can be correlated with the particle linear velocity [17, 18].
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Figure 1: Snapshot of 32768 3D spheropolygons with a volume fraction ν = 0.04.

Finally, much less is known about the kinetic evolution of system composed by anisotropic particles [19, 20].
However, recently there has been an increasing interest in the behavior of non-spherical grains both experimentally
[21, 22, 23, 24, 25, 26] and numerically [27, 28, 29, 30]. In the present work, we investigate the free cooling process
of a granular gas of elongated 3D particles. In the next sections, we analyze the role of the inelasticity and the particle
shape in the overall kinetic processes.

The paper is organized as follows: in Sec. 2 we introduce some basic concepts about the kinetic of granular gases,
in Sec. 2 we described the numerical model and implementation of our algorithm, Sec. 4 discusses the results of the
homogeneous cooling state of a system of friction-less rods and finally we present our conclusions and outlook.

2. Homogeneous colling state of rods

In a gas of spherical particles of radio a in HCS, the kinetic energy decreases homogeneously and the time evo-
lution of all variables occur only through its global temperature. By introducing the dimensionless translational
T = Ttr(t)/Ttr(0) and rotational temperatures R = Trot(t)/Ttr(0) as well as a characteristic time τ, Luding et al [31]
have found that the kinetics of a granular gas of rough spheres is governed by the system of equations,

d
dτT = −AT

3/2 + BT 1/2R
d
dτR = BT

3/2 −CT 1/2R (1)

where A, B and, C are constants that depend on space dimensionality D (further details in [31]).

A = 1−ϵ2n
4 + η(1 − η)
B = η

2

q
C = ηq

(
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where η = q(1+ϵt)
(2q+2) (in 3D q = 2

5 for spheres) and en and et are the restitution coefficients on the normal and tangential
direction respectively. The equilibrium Enskog collision rate for the initial temperature Ttr(0) reads as Gsph(a) =
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tr (0). This variable is commonly used to rescale real time scale accordingly to τ = 2
DGspht, and

D accounts for the number of translational degree of freedom. It has been found that in general the principle of
equipartition does not necessary apply, resulting asymptotically that Ttr(τ)/Trot(τ) ! 1.

On the other hand, the HCS of systems of friction-less ellipsoids has been recently examined [27, 30] In that case,
the total intern energy Ttot(t) of the gas is a weighted average of Ttr and Trot with the weights given by the respective
degrees of freedom:

Ttot(t) =
3
5
Ttr(t) +

2
5
Trot(t). (3)

Villemot and Talbot have found that for a gas of friction-less elongated ellipsoids equipartition holds [27] and, ac-
cordingly, the energy stored by the rotational Trot(t) and translational Ttr(t) degrees of freedom equally evolve in time,
finding asymptotically Ttr(t)/Trot(t) ≈ 1. Those results motivated us to examine the HCS of dissipative friction-less
rods.

Assuming the existence of a (HCS) of friction-less rods, one could argue that the mean field scheme may also
apply to a dilute gas of rods. It is also known that in case the the principle of equipartition fully applies Ttr/Trot = 1,
the energy lost can be totally described by the particles restitution coefficient en. In that case, the evolution of the
granular temperature would obey Haff’s Law[32]:

Ttr(t)
Ttr(0) =

1
(1 + αGrd(d)t)2 =

1
(1 + τ2)

, (4)

where α = 1−e2
n

2D . The constantD is interpreted as the number of degrees of freedom among which energy is transferred.
We consider a gas compose by spherocylinders with aspect ratio d, with d = (l+2r)/2r where r and l are the radio and
length, respectively. For the cooling dynamics of this system, we propose a new characteristic time, τ = αGrd(d)t =
αDc(d)Gspht, which is written in terms of the collision frequencyGsph of a sphere with the same volume. Additionally,
Dc(d) measures the average energy transfer between rotational and translational degrees of freedom due to collisions.
For the case of ellipsoids, there is an analytical expression of Gellip(d) [27], but in the case of rods the analytic
description is still lacking. In this paper we took advantage of the homogeneous properties of the HCS of rods to
numerically found the functionality ofDc(d).

3. Numerical Model

We have developed a hybrid GPU-CPU discrete element algorithm for simulating three-dimensional spherocylin-
ders. The present implementation is based on a similar algorithm of rough spheres [33] that has been recently intro-
duced in CUDA (Couputer Unified Device Architecture), which is a parallel computing platform invented by NVIDIA
[34]. The application developed, as most of the GPGPU software, has an heterogeneous architecture. This means that
some pieces of code run on the CPU and others on the GPU.

In the model, the rods are considered as sphero-cylinders, which are characterized by their length l and sphero-
radius r. To calculate the contact interaction, F⃗i j, we use a efficient algorithm proposed by Alonso-Marroquı́n et al
[35, 36], allowing the simulation of a large number of particles. This numerical method is based on the concept of
spheropolygons, i.e a polygon i is defined by the set of vertexes Vi and edges Ei. Hence, the interaction is equivalent
to the inter-penetration between the two neighboring spheres. Thus, the force F⃗i j exerted on particle i by the particle
j is defined by:

F⃗i j = −F⃗ ji =
∑

i j
F⃗(Vi, E j) +

∑

ji
F⃗(Vj, Ei) (5)

where F(V, E) represents the force between the vertex V and the edge E of each contacting pair i j. Hence, the local
interaction between two contacting particles is only governed by the overlap distance δ between vertex and edges. In
Eq.5, each term F(V, E) can be decomposed as F⃗(V, E) = FN · ˆ⃗n+FT · ˆ⃗t, where FN is the component in normal direction
n⃗ to the contact plane. Complementary, FT is the component acting on the tangential direction t⃗. To define the normal
interaction FN , we use a linear elastic force proportional to the overlap distance δ. To account for dissipation, a
velocity dependent viscous damping is assumed. Hence, the total normal force reads as FN = −kNδ−γNmrvNrel, where
kN is the spring constant in the normal direction, mr =

mimj
(mi+mj) =

m
2 stands for the pair’s reduced mass, γN is the
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damping coefficient in the normal direction and vNrel is the normal relative velocity between i and j. The tangential
force FT also contains an elastic term and a tangential frictional term accounting for static friction between the grains.
Taking into account Coulomb’s friction constrain, which reads as, FT = min{−kTξ − γTmr · |vTrel|, µF

N}, where γT is
the damping coefficient in tangential direction, vTrel is the tangential component of the relative contact velocity of the
overlapping pair. ξ represents the elastic elongation of an imaginary spring with spring constant kT at the contact [37],
which increases as dξ(t)

dt = v
T
rel as long as there is an overlap between the interacting particles [37, 38]. µ is the friction

coefficient of the particles. Although the implementation is already generalized for frictional particles, later on we
will only refer to non-frictional cases.

The Newton’s equation of motion of the rods particles i (i = 1, ...,N) read as,
Nc
∑

j=1
F⃗i j = m ¨⃗ir (6)

for the translation degrees of freedom. Complementary, the Euler’s equations describe the rotational motion,
Nc
∑

j=1
τxi j = M

x
i = Ixx ω̇

x
i j − (Iyy − Izz) ωyi ω

z
i

Nc
∑

j=1
τyi j = M

y
i = Iyy ω̇

y
i j − (Izz − Ixx) ωzi ω

x
i

Nc
∑

j=1
τzi j = M

z
i = Izz ω̇

z
i j − (Ixx − Iyy) ωxi ω

y
i

(7)

In the expressions, m represents the mass of the particle and Ixx, Iyy, Izz are the eigen-values of the moment of inertia
tensor Ii j. Fi j is the force exerted by particle j on particle i and τi j accounts for its corresponding torque τi j. The total
force Fi, and momentumMi acting on particle i are obtained as sums of the pair-wise interaction of particle i with its
contacting neighbors.

We have developed function integrators, for both the translation and the rotational degree of freedom. To integrate
the 3D translational equations of motion a Verlet-velocity numerical algorithm have been implemented.

The numerical implementation of the rotational degree of freedom deserves a more detailed description. The set
of Eqs(7) describes the evolution of the particles angular velocity ω, in the body frame. Additional equations are
necessary to describe the evolution of the particle orientation, We adopted here the quaternion representation, which
has several demonstrated technical advantages over other methods [39]. The unit quaternion q = (q0, q1, q2, q3) =

q0+q1i+q2 j+q3k characterizes the particle orientation ([40, 41]) where
3
∑

i=0
q2
i = 1. Each quaternion variable satisfies

the rotational equation of motion [40, 41]
q̇ =

1
2Q(q)ω (8)

where
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Equations (7) and (8) are solved using a Fincham’s leap-frog algorithm [42]. The approach obtains q(t + dt) from
q(t) using

q(t + dt) = q(t) + dt q̇(t) + dt
2

2
q̈(t) + O(dt3) = q(t) + dt q̇

(

t +
dt
2
)

+ O(dt3) (9)

Hence, quaternion derivative at mid-step q̇(t + dt/2) is required. Equation (8) indicates that q(t + dt/2) and
ω(t + dt/2) are required, the former can be easily calculated using

q
(

t +
dt
2
)

= q(t) + q̇(t)dt
2

(10)
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Figure 2: In a) the evolution of the kinetic energy of several systems of rods with en = 0.88; in b) the ratios between the rotational Trot(t) and the
translational kinetic energy Ttr(t) are also shown.

where q̇(t) is again obtained from (8), prior to which ω(t) can be calculated using

ωx(t) = ωx
(
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dt
2
)

+
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2
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in the same way ω
(
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2

)

, is determined as,
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To avoid build-up errors, the quaternions q(t) are renormalized every time step.
The parameters of the contact model are chosen as follows: to model hard particles the maximum overlap must

always be much smaller than the particle size. This have been ensured by introducing values for normal elastic
constant, kn = 2.8 × 106. The normal dissipation parameter γn is related with the normal coefficient of restitution
en by the equation γn =

√

(4knm12)/(( π
ln 1/en )2 + 1). For frictional-less rods we have set γt = 0 and kt = 0. The

collision time can be estimated tc = π
√
m12/kn, accordingly a time ∆t = tc/50 have been used. To compare the

numerical simulations with existing analytical predictions, systems of particles with different restitution coefficients
were studied, en = 0.88, 0.90, 0.96.

4. Simulation Results

We have numerically studied the free cooling kinetics of a dilute granular gas of rods. In all simulations reported
here, a fixed number of particles (N = 215 = 32768) confined in a square box of size L = 2m is used. Simulations have
been performed with rods of different aspect radios, from d = 1.25 to d = 4, with d = (l + 2r)/2r but always keeping
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Figure 3: Collapse of the curves Ttr/Ttr(0) vs Grdt = Dc(d)Gspht for each en is illustrated. Theoretical result correspond to the numerical solution
of the system of equations 1 with similar volume fraction and et = 1

the packing fraction equal to ν = 0.045; in each case the values of r and l have been adjusted to the choice of nu and d.
Initially, the particles are homogeneously distributed in the space and their translational and rotational velocities follow
a uniform distribution. To minimize finite size effects, periodic boundary conditions are implemented. Moreover, with
the aim of avoiding the initial configuration effects, the dissipation is initially disabled, and a number of free iterations
is performed. After that, the energy loss is enabled and the main loop of the program set up. The simulations
are allowed to run until the total mean translational and rotational kinetic energies have decayed several orders of
magnitude. In Fig.1 we display a snapshot of the simulation.

We have quantified the temporal evolution of freely evolving gases of rods by monitoring the mean translational
and rotational kinetic energy of the system, usually referred as granular temperatures. In Fig. 4, the evolution of the
translational kinetic energy Ttr in time is presented. Very similar the spheres, a gas of rods cools down uniformly. Due
to the low dissipation, in all cases the system seems to go into a HCS where the granular temperature asymptotically
decreases following Haff’s law t−2. Complementary in Fig. 4b, the asymptotic ratio of Ttr/Trot is examined varying
the elongation and the coefficient of normal restitution. Note that one observes two regions, in the case of short rods
d < 1.5 the translational degree of freedom cools down faster than the rotational one Ttr/Trot < 1. For longer rods,
however, energy equipartition is better satisfied, Ttr/Trot = 1, especially as one gets closer to the elastic limit en = 1.
These findings indicate that the coupling between the rotational and translational degrees of freedom is more efficient
as the particle gets longer. Consequently, the correlations between the linear and the angular movement are stronger
and energy equipartition is achieved earlier. This behavior has also been observed in granular gases of monodisperse
ellipsoids [27].

In Fig.3 the time evolution of the kinetic translational energy is compared to the mean field analytical results,
which are available for a gas of spheres with similar macroscopic properties [31]. The time scale has been rescaled
with its corresponding geometrical factor Grd = αDc(d)Gsp. Note that the only free parameter is Dc, which has
been used as fitting parameter between analytical prediction (solving Eqs. 1 with similar volume fraction and et =
1) and the numerical data obtained in our simulations. It is remarkable that all curves with different aspect ratios
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Figure 4: Scaling of all the curves when using the characteristic time τ = αDc(d)Gspt, numerical data corresponding to several particles elongations
d > 1.5 and restitution coefficients (en = 0.88; 0.90; 0.96) have been included.

collapse into the analytical prediction. This proves the existence of a HCS where energy equipartition practically
fulfill Ttr(t)/Trot(t) = 1. Thus the total energy of the system homogeneously decreases and the time evolution of all
variables can be described only through its global translational temperature Ttr(t).

Then we can go one step forward to test whether the nature of the system kinetics is independent of the dissipation
parameters. In Fig. 4, we illustrate how Haff’s Law applies to the homogeneous cooling state. The solid line corre-
sponds to the theoretical approximation using Eq. (4), τ = αGrdt with α = 1−e2

n
2D setting D = 5, which corresponds with

three translational and two rotational degrees of freedom, respectively [27]. The scaling of the curves and the remark-
able agreement with the general analytical solution indicates the presence of a very homogeneous cooling process.
Moreover, its consistency validates the performance of the numerical algorithm running on GPU architecture. It is
important to remark, that the agreement is slightly lost as one approaches to the limit d = 1 (spheres). This case result
singular due to the abrupt absence of torques and rotational degrees of freedom. Note that for friction-less spheres
the rotational degrees of freedom are completely decoupled from the dynamic evolution of the gas. Moreover, the
agreement with the analytical solution is also lost when the dissipation is enhanced. Here, we could argue that the
numerical performance of the algorithm might be conditioned by the hardness of the used particle.

Fig. 5 shows the values ofDc obtained from the fitting with the Haffs law. The procedure allows us to numerically
determinate the functionality of Dc, which quantifies the the efficiency of the energy transfer between rotational and
translation degrees of freedom and its size dependence for the case of rods. For comparison, we also include in Fig.5
data corresponding to the analytic outcomes obtained for friction-less monodisperse ellipsoids [27]. It is important to
remark that even though using rods and ellipsoids with the same volume, still both geometrical shapes have different
average surface area Sc. Consequently, one would have to compare the magnitudeDcSc. For sake of simplicity, the
analytic values of Ref [27] have been rescaled with Scellip/Scsph, the ratio of the average surface area of the excluded
volume at contact for the ellipsoids Scellip at its corresponding sphere with the same volume Scsph. As expected,
the results for rods are very close to the outcomes for ellipsoids with similar elongations. However, there is a region
where the rods and ellipsoids behaves different. Hence for (1.5 < d < 4.0) the average energy transfer between the
rotational and translational degrees of freedom is slightly greater for rods than ellipsoids with similar elongation.

Finally, during the cooling process the velocity statistics was also examined. The simulation begins from a uniform
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Figure 5: Numerical estimation of Dc as a function of the elongation, obtained collapsing each numerical data for the translational kinetic energy
and its corresponding analytic prediction. For comparison, the dashed line corresponds to the theoretical result for homogeneous ellipsoids given
in Ref. [27].

velocity distribution for both, the translational and angular degree of freedom. Before starting to analyze the system
temporal evolution, the system is allowed to execute several hundreds of collisions without dissipation,. Note that
due the low dissipation, particles cool down uniformly over a wide range of time. Thus, all the temporal dependences
are calculated through the mean values of the translational and rotational temperature. The velocity distributions
at different snapshot of the simuation are shown in Fig.6 a). In all cases, the velocity distributions is close to a
Maxwell distribution P(vi) = 1

σv
√

2π
ev2

i /2σ
2
v . For the rotational degree of freedom, in Fig.6 b) we plot the angular

velocity distribution for each angular component obtained at different times. The data proves that cooling process at
the rotational level also occurs homogeneously. Thus, the two components of the angular velocity behave equivalently
and with the same characteristic values. In all cases the distribution follows a Gaussian behavior P(wi) = 1

σw
√

2π
ew2

i /2σ
2
w

featuring the expected homogeneous cooling process. Nevertheless, finite size limitations prevents us from analyzing
the tails of the distributions, where deviations from the Gaussian behavior may appear.

Conclusions

We numerically describe a homogeneous cooling state of a granular gas of 3D spherocylindrical particles. In that
state, the evolution of the system intensive variables occurs only through a global granular temperature. We examined
the uniform colling kinetics and introduced rescaling time τ(d), which depends on the particle elongation. Excellent
agreement with Haff’s law and energy equipartition are observed for elongated particle d > 1.5. The agreement
is enhanced when approaching to the elastic limit. Taken in advantages of scaling properties, we have numerically
determined the general functionality of the magnitude Dc, which describes the efficient of the energy interchange
between rotational and translational degrees of freedom, as well as its dependence with the particle shape.

For longer times and high dissipative systems, we observe deviations from Haffs Law and clustering. Moreover,
introducing particle friction has a remarkable influence on the system cooling kinetics. In that case, the azimuthal
and polar rotational degrees independently evolve and only correlate with the translational degrees of freedom at very
long time. These issues will be investigated in future works.
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[2] T. Pöschel, T. Schwager, Computational Granular Dynamics, Springer-Verlag, Berlin , 2005.
[3] J. Brey, M. Ruiz-Montero, D. Cubero, Homogeneous cooling state of a low-density granular flow, Phys. Rev. E 54 (1996) 3664.
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